BİLGİSAYAR PARÇALARI

 

HDD
 
             Verilerimizi kalıcı olarak saklamak için kullanılan bir saklama birimidir. Sabit disk döner bir mil üzerine sıralanmış, metal veya plastikten yapılma ve üzeri manyetik bir tabaka ile kaplı plakalar ve bu plakaların alt ve üst kısımlarında yerleşen okuma/yazma kafalarından oluşur. Veriler sabit diskteki bu manyetik tabakalar üzerine kaydedilir. Verilerin kaydedilmesinde mıknatıslanma mantığı kullanılır. Mıknatısın iki kutbu dijital olarak 1 ve 0 ‘ı temsil eder. Verilerimiz böylece küçük mıknatıslar halinde bu manyetik ortamlara yazılırlar. Bu manyetik tabakaların üstü dairesel çizgilerle  örülüdür. Bunlara iz (track) denir. Sabit disk’te birden fazla plakalar üst üste dizilmiştir. Bu plakaların hem alt hem de üst tarafına bilgi yazılabilir. Herbir plaka üzerinde altlı-üstlü yerleşen ve herbirinin ortadaki mile uzaklığı aynı olan izlerin oluşturduğu gruba silindir ismi verilir. Sabit disk üzerinde herbir yüz bir kafa tarafından okunmaktadır. Bu nedenle kafa ve yüz aynı terime karşılık gelir. İz yapısını pasta dilimi şeklinde bölünmesiyle oluşan ve sabit disk üzerinde adreslenebilir en küçük alana denk gelen parçaya ise sektör (Sector) adı verilir ve bir sektörün barındırabileceği veri miktarı 512 byte uzunluğundadır. Bu sektör, kafa ve izler sabit diskte verinin adreslenmesi için kullanılırlar. Şuan adreslemede kullanılan iki yöntem vardır. Bunlardan ilki CHS olarak adlandırılan Cylinder-Head-Sector konumlarının verilmesi ile 3 boyutlu olarak dosyanın yerinin bulunması ikincisi ise LBA (Logical Block Adressing – mantıksal kütük adreslemesi) adı verilen tek boyutlu adresleme yöntemidir. Günümüzde kullanılan iki tip sabit disk arabirimi vardır. Bunlar IDE ve SCSI’dir.
 
IDE (Integrated Drive Electronics) bilgisayarın anakartındaki veri yolu ile depolama aygıtları arasında kullanılan standart bir elektronik arabirimdir. IDE IBM’in 16 bitlik ISA yol sistemi tabanlıdır ama ayrıca diğer yol standartlarını kullanan yol sistemlerinde de kullanılabilir.Günümüzde satılan birçok bilgisayar IDE’nin gelişmiş versiyonu olan EIDE’yi (Enhanced IDE) kullanır. IDE kasım,1990’da ANSI tarafından bir standart olarak benimsendi. IDE’nin ANSI ismi ATA’dir (Advanced Technology Atachment). Normal şartlar bir IDE arabirim ile iki tane sabit diskin çalıştırılması mümkündür: Ancak iki entegre denetleyicisinin birinci pozisyonda olmak istemesini engellemek gerekir. Bunu yapmak için sürücülerden biri ana sürücü (Master Drive) diğeri de bağımlı sürücü (Slave Drive)’dır. Bu disk işlemlerinde açık bir hiyerarşi oluşturur.  IDE’nin deenetleyici teknolojisinin artan isteklerine cevap vermekte yetersiz kalması nedeni ile EIDE’nin ortaya çıkmıştır. IDE denetleyicisinin üç temel sorunu vardı. 528 MB'’lık depolama  üst sınırı vardı. Yani 528 MB’ın üstündeki diskler IDElerle kullanılamazlar. En çok iki disk desteği vardı. Yalnızca iki disk kullanılabilmekte idi. Ve CD-ROM gibi çevre birimlerine destek vermemekte idi. EIDE ile birlikte her bir disk için 8.4 GB’lık disk desteği vardır. Günümüzde bu sınır daha da üste çekilmiştir. 128 GB’a kadar diskler desteklenebilir. 4 tane IDE  diski ve CD-ROM kullanılabilir. Bunun için de IDE1 ve IDE2 olarak iki tane arabirim konnektörü kullanılır. Birincil olana Primary ikincil olana da Secondary ismi verilir. Bir konnektörde iki tane disk ve benzeri aygıt kullanılabilir. Bunlar birbirinden Master ve slave olarak biribirinden ayrılır. Böylece bilgisayara takılan disk ve benzeri birimler Primary master, Primary Slave, Secondary Master ve Secondary Slave olarak isimlendirilir. Hiyerarşik düzünde aynen bu şekildedir. EIDE’lerle birlikte Ultra DMA kavramı ile karşılaşmaktayız. Ultra DMA bilgisayarın veriyi sabit diskten bilgisayarın veri yolları ile anabelleğe göndermede kullanılan bir protokoldür. ULTRA DMA/33 protokolü verileri çoğuşma modunda ve 33.3 MBps (Megabayt/saniye) hızında transfer eder. Bu bir önceki DMA arabiriminin iki katı kadar daha hızlıdır.Ultra DMA Sabit disk üreticisi olan QUANTUM ve chipset üreticisi olan INTEL tarafından geliştirildi. Bilgisayarınızın Ultra DMA’yı desteklemesi demek bilgisayarınızın daha hızlı açılması, yeni uygulamaları daha hızlı çalıştırması anlamına gelir. Ultra DMA 40 pinlik bir IDE arabirimi kablosu kullanır.  Ultra DMA/33’den sonra Ultra DMA/66 çıktı. Ultra DMA/66 verilerin 66 MBps hızında iletilmesini sağlar. Bu bir önceki Ultra DMA moduna göre iki kat hızlıdır. Ultra DMA/66 80 pinlik IDE kablosu kullanılır. Ultra DMA’nın çoğuşma modunu desteklediği söylenmişti. Çoğuşma modu verilerin normalinden daha hızlı gönderildiği bir veri gönderme kipidir. Çoğuşma kipini gerçekleştiren birçok teknik bulunmaktadır. Veri yolunda, Örneğin çoğuşma modu, bir aygıtın yolun kontrolünü  ele almasını ve diğer aygıtların bunu kesmemesini sağlayarak gerçekleştirilir.  RAM’de ise Çoğuşma modu bir sonraki hafıza birimi kendisine ihtiyaç duyulmadan getirilerek yapılır. Bu disk cachlerinde kullanılan tekniğin aynısıdır. Böylece veriler daha hızlı iletilirler.
Bütün çoğuşma modlarının sahip olduğu bir karakteristik geçici ve güçlendirilemeyen olmasıdır. Sınırlı zaman dilimlerinde ve özel şartlarda normalden daha hızlı veri transferi sağlarlar.
 
Small computer System Interface’in kısaltılmış şeklidir. SCSI arabirimi seri ve paralel portlardan daha hızlı veri transfer oranı sağlar. (saniyede 80 Megabyte veri iletimi sağlayabilir). SCSI arabirimlere diskin dışında yazıcı, CD-ROM gibi çeşitli aygıtlar bağlanabilir. Bu yüzden SCSI basit bir arabirimden çok bir giriş/çıkış yoludur.  SCSI arabirimi bir ANSI standardı olmasına rağmen çeşitli varyasyonları bulunmaktadır. Bu yüzden İki SCSI arabirimi birbiri ile uyumlu olmayabilir. Günümüzde kullanılan SCSI arabirimleri aşağıdadır.
¨      SCSI-1 : 8 bitlik bir yol kullanır ve 4 MBps lik bir veri transfer hızını destekler.
¨      SCSI-2 : SCSI-1 ile aynıdır, fakat 50 pinlik konnektörler kullanırlar. ve birden fazla aygıtın bağlanmasına izin  verirler.
¨      Wide SCSI : 16 bitlik veri transferini desteklemek için daha geniş bir kablo kullanırlar.
¨      Fast SCSI : 8 bitlik yol kullanırlar, fakat 10 MBps’lik veri transferini desteklemek için  saat hızını ikiye katlarlar.
¨      Fast wide SCSI : 16 bitlik yol kullanır ve 20 Mbpslik veri transfer hızını destekler.
¨      Ultra SCSI : 8-bitlik yol kullanır ve 20 MBps’li veri transfer hızını destekler.
¨      SCSI-3: 16 bitlik yol kullanır ve 40 MBps’lik veri transfer hızını destekler. Ayrıca Ultra Wide SCSI de denir.
¨      Ultra2 SCSI: 8 bitlik yol kullanır ve 40 MBps’lik veri transfer hızını destekler.
¨      Wide Ultra2 SCSI: 16 bitlik bir yol kullanır ve 80 MBps’lik veri transfer hızını destekler.
SCSI aygıtların dürümlerine göre 15 aygıta kadar sisteme bağlayabilir. SCSI’ler IDE arabirimlerinden farklı olarak rasgele erişim yöntemini kullanırlar. IDE’ler ise sıralı erişim yöntemini kullanırlar. SCSI arabirimleri IDE’lerden daha hızlıdırlar. Ancak daha da pahalıdırlar. Dünya piyasının yaklaşık %10’unda varlar. IDE’ler ise ucuz olmaları ve artık anakart üzerinde tümleşik olarak gelmeleri sebebi ile daha fazla tercih edilmiştir. Bir sabit diskin kapasitesi şu şekilde hesaplanır.
Silindir sayısı*Sektör Sayısı*kafa sayısı*512’dir
1024 silindir, 256 kafa ve 63 sektör parametrelerine sahip bir sabit diskin kapasitesi: 1024*256*63*512=845571864 Byte’dır. Bu da yaklaşık 8.4 Gigabyte’dır. Sabit diskler ile gelen önemli bir kavram da partisyon kavramıdır. Partisyon kabaca diskin üzerinde oluşturulmuş bölümlerdir. Bir diskte sadece bir partisyon olabileceği gibi birden fazla da partisyon olabilir.  Bir partisyon hangi amaç ile oluşturulmuş olursa olsun o partisyona ulaşım yapacak işletim sistemine uygun bir dosya sistemi ile biçimlendirilmelidir. Bu genellikle işletim sisteminin sorunudur ve işletim sistemi birden fazla dosya sistemini destekleyebilir. Partisyonların isimlendirilmesine gelince ilk olarak primary master konumundaki partisyon c’den itibaren isim almaya başlar.  Sonra master diskinizde birden fazla partisyon var ise onlar isimlendirilmeye başlar.  Örneğin Primary master’daki disk ikiye bölünmüş ise birincisi C: ikincisi ise D: ismini alır. Buradaki bölümleme işlemi mantıksaldır. Eğer, ikinci bir sabit disk var ise bu disk fiziksel olduğu için D: harfini alır. Mantıksal olarak bölümlenmiş diskin ikinci bölümü ise E: harfini alır. Dosya sistemlerinde yaygın olanlarından biraz bahsedelim
 
File Allocation Table – Türkçeye çevirmek gerekir ise Dosya Atama Tablosu.Bu sistemde partisyon herbiri belli miktarda sektör içeren cluster isimli parçalara ayrılır. Ve hangi dosyaların bu cluster parçalarından hangilerine yerleştiği, hangi cluster parçalarının boş, hangilerinin dolu olduğu gibi bilgiler FAT üzerine yazılır. İşletim sistemi de herhangi bir dosyaya erişim yapmak istediğinde dosyayı bulmak için FAT üzerine yazılan bu bilgilerden faydalanır. Her ihtimale karşı sabit disk üzerinde bir kopyası bulundurulur.
 
¨     
DOS, Windows3.1 ve OSR2 sürümü öncesi Windows95’in kullandığı dosya sistemidir. Eski bir dosya sistemi olduğu için birtakım dezavantajları ve eksiklikleri vardır.  Bunlardan bir tanesi kök dizinin (root) sınırlandırılmış olmasıdır. FAT16 sisteminde açılıştaki primary partisyona ait root dizini, FAT tablosu ve  boot sektörü cluster içinde yer almazlar ve sayısı belli olan sıralı sektörlerde tutulurlar. Bu sayının belli olması kök dizinine yapılacak eklentilerin belli bir sınırı olması sonucunu doğurur. Kısacası altdizin istenildiği kadar uzatılabilmekle birlikte kök dizinde belli uzunlukta girişle sınırlandırılmıştır. İkincisi FAT16 dosya sisteminde adresleme 16 bit olduğundan adreslenebilecek maksimum cluster sayısı 65525’tir ve bu clusterların boyutu 32 KB olabilir. (aslında cluster sayısı 65536 olmalıdır. Ama bazıları özel amaçlar için tutulur.) bu da bizi FAT16’da kullanılan bir partisyonun 2 GB’dan daha büyük olmayacağı sonucuna götürür. Üçüncüsü FAT16 elindeki boş sabit diski ya da partisyon alanının bir şekilde elindeki clusterlara dağıtmak zorundadır. Bu nedenle sabit diskin boyutu büyümeye başladıkça cluster’ın boyutu da büyür. Örneğin 1 MB’lık bir dosya birçok cluster üzerine sıralanıp yerleşirken 10KB uzunluğundaki tek bir dosya bir cluster’ı kaplar. Bu durumda özellikle disk boyutu 1-2GB arasında iseFAT16 cluster boyutu 32 KB olacaktır ve cluster üzerinde 10KB’lık dosyadan arta kalan 22 KB’lık boşluk değerlendirilemeyerek boşa gidecektir. Özellikle çok miktarda ufak dosya barındıran  sabit disklerde bu durum bolca olur. 
¨     
Windows95 OSR2,  Windows98, Windows2000 ve Linux tarafından tanınan ve FAT16’dan daha gelişmiş bir dosya sistemidir. İlk olarak FAT32’de herhangi bir kök dizin sınırlaması yoktur. İkinci olarak FAT32, FAT16’daki 16 bitlik adresleme yerine 32 bitlik adresleme kullanır. Bu da 2 TB’a kadar olan disklerin tanınmasını sağlar. Üçüncü olarak FAT32 cluster boyutunu azaltarak boş alan israfını azaltır.  FAT16 ile FAT32 arasındaki farklar değişik disk veya partisyon büyüklükleri için aşağıdaki tabloda gösterilmektedir.
 
FAT16 ve FAT32 cluster boyutları
Sürücü ya da Partisyon Boyutu
FAT16 cluster Boyutu
FAT32 cluster boyutu
256 MB - 511 MB
8 KB
Desteklenmiyor
512 MB – 1023 MB
16 KB
 4 KB
1024 MB – 2 GB
32 KB
 4 KB
2 GB – 8 GB
Desteklenmiyor
 4 KB
8 GB – 16 GB
Desteklenmiyor
 8 KB
16 GB – 32 GB
Desteklenmiyor
 16 KB
à 32 GB
Desteklenmiyor
 32 KB

 

 

ANAKART

Anakart Üzerinde Bulunan Bileşenler   Ø   İntel Ø     VIAØ     SIS Ø     ALI    Yollar            AGP Yolu: İşletim sistemi Windows95’in 2.1 sürümü, Windows98 ya da NT 4.0 olmalıdır. Ayrıca şuan profesyonel bütün Machintoshlar AGP’yi desteklemektedir.
 Bir anakart bilgisayarın temel devre ve bileşenlerinin fiziksel düzenlemesidir. Çoğu anakartta; devreler sert bir yüzey üzerine basılmış ya da eklenmiştir ve bir seferde üretilirler. Masaüstü bilgisayarlarda en sık kullanılan anakart dizaynı AT’dir.  Son zamanlarda gelişmiş AT dizaynı üstünde geliştirilen bir başka kart tipi de ATX’dir Hem AT hem de ATX  dizaynların ikisinde de bulunan bileşenler şunlardır.
 
*   Mikroişlemci
*   Yardımcı işlemci (opsiyonel)
*   Hafıza
*   BIOS
*   Genişleme yuvaları
*    Chipset
 
Ek bileşenler anakartın genişleme yuvalarına eklenebilir. Anakart ve genişleme yuvalarındaki daha küçük kartlar arasındaki elektronik arabirime “yol” denir.
 
Anakart üzerinde Jumper denilen ayarlama anahtarları vardır. Bu anahtarlar ile yapılacak ayarlamalar.
 
v     Farklı tipteki işlemcileri anakarta tanıtmak
v     Cmos ayarlarını silmek
v     Bazı anakartlarda özellikle eski anakartlarda ne kadar belleğin varolduğunu belirtmek.
 
Günümüz yeni kuşak anakartların hemen hemen hepsinde işlemci ayarları jumperlarla yapılmamaktadır. Artık bu ayarlamalar otomatik olarak ya setuptan seçeneklerle yapılmaktadır ya da kart otomatik olarak kendi işlemciyi tanımaktadır.
 
Chipset’ler anakartın en önemli parçasıdır. Chipset’ler anakartın üzerindeki elektronik devrelerdir. Anakart üzerindeki elemanların birbirleri ile haberleşmesini sağlayan denetçilerdir. Bir nevi trafik polisi gibidir. Bu yollar üzerinde dolaşan verilerin birbirlerine karışmamasını sağlar. Ankartın kalitesini belirleyen en önemli faktör chipsettir.  Özellikle anakrtın hızını belirleyen faktördür. Çeşitli Anakart Üreticileri ve bu Anakart üreticilerinin çeşitli chipsetler bulunmaktadır. Çeşitli firmalar ve ürettikleri chipsetler aşağıda sıralanmıştır.
 
¨      Intel 815E Chipset
¨      Intel 815 Chipset
¨      Intel 820E Chipset
¨      Intel 820 Chipset
¨      Intel 840 Chipset
¨      Intel 810E Chipset
¨      Intel 810 Chipset
¨      Intel 440BX AGPset
¨      Intel 440EX AGPset
¨      Intel 440GX AGPset
¨      Intel 440LX AGPset
¨      Intel 450NX PCIset
¨      Intel 450KX/GX PCIset
¨      Intel 440ZX AGPset
¨      Intel 440ZX-66 AGPset
¨      Intel 440MX chipset
 
 
¨         VIA Apollo KT133
¨         VIA Apollo KX133
¨         VIA Apollo Pro133A
¨         VIA Apollo Pro 133
¨         VIA Apollo PM601
¨         VIA Apollo MVP3
¨         VIA Apollo MVP4
¨         VIA Apollo Pro Plus
¨         VIA Apollo Pro
¨         VIA Apollo VP3
¨         VIA Apollo VP2
¨         VIA Apollo VPX
¨         VIA Apollo VP
 
¨         SIS 85C471
¨         SIS 85C496
¨         SIS 85C50x
¨         SIS SI58P
 
 
         ¨         M1487
¨         M1489
 
            Yollar verilerin bilgisayarın bir parçasından diğer parçasına gönderildiği teller topluluğudur. Yolu bilgisayarın içinde verilerin dolaştığı bir otoban gibi düşünebilirsiniz.
            Bütün yollar adres yolu, veri yolu  sistem (Kontrol) yolu olmak üzere üç tip yol içerir. Veri yolu gerçek veriyi taşır.
 
o       Adres  Yolu: Adres yolu verinin nereye gideceği bilgisini taşır. Adres yolu bellekteki bir yerin veya veri transferinde görev alan giriş çıkış portunun adresini iletmekte kullanılır. ROM ve RAM bellekte saklanan her komut ve her bilginin 16 bitten oluşan bir adresi vardır. Programın çalışması sırasında verilen bir yerin içeriği gerekli olduğunda; Mikroişlemci o yerin adresini adres yoluna koyar. Adres yolu verinin saklanmakta olduğu yere ulaşmakta kullanılan adresi iletmekte kullanılır. Ulaşılan verinin içeriği daha sonra veri yoluna konur. Ve bu verinin içeriği daha sonra mikroişlemciye okunur. Adres yollarının çoğu 16 bitten oluşur. Her hat 0 ya da 1 den oluşan bir adres biti taşır. Bundan dolayı söz konusu 16 hattın 216 = 65536 değişik kombinasyonu söz konusudur. Bunun anlamı 16 adres hattı kullanılarak 65536 tane saklama yerine ve giriş/çıkış aygıtına ulaşabilmektedir.
o       Veri Yolu: Verilerin bilgisayarın belirli bölümleri arasında dolaşmasını sağlar. Yani bir anlamda esas verinin taşındığı yoldur. Bu veri makinanın komutları ya da bellekteki işlenecek herhangi bir bilgi olabilir. Kontrol ve adres yollarından farklı olarak Veri yolu çift yönlüdür Veri her iki yönde de hareket edebilir. Yani hem mikroişlemciye hem de mikroişlemciden dışarıya doğru.
o        Sistem (Kontrol) yolu: Mikro işlemcinin zamanlama ve kontrol devrelerinde üretilen kontrol sinyallerini belleğe ve Giriş/Çıkış birimlerine taşır. Örneğin oku/yaz bilgilerini belleğe, giriş ve çıkış portlarına taşır. Kısacası işlemin yazma mı okuma mı olduğuna karar verir.Bilgisayarın her parçasına ulaşmasını sağlayan yoldur.
 
Yolun büyüklüğü önemlidir. Çünkü bu büyüklük yolun aynı anda ne kadar veri taşıyabileceğini belirler. Örneğin 16 bitlik bir yol 16 bitlik veriyi, 32 bitlik yol ise 32 bitlik veriyi taşıyabilir. Her yolun MHz ile ölçülen bir saat hızı vardır. Örneğin sistem yolunun hızı ilk başlarda 33 MHZ idi. Gelişen teknoloji ile bu yolun hızı önce 66 MHZ yükseldi. Günümüzde ise 100 ve 133 MHZ’lik sistem yollarını üzerinde bulunduran anakartlar bulunmaktadır.  Günümüzde 16 bitlik ISA yolları yerini kendisinden daha hızlı olan 32 bitlik PCI yoluna bırakmaya başladı. Anakart üzerinde genel olarak üç tip yol teknolojisi bulunmaktadır. Bunlar ISA, PCI ve AGP’dir.
 
            ISA Yolu: Industry Standard Architucture (Endüstrü Standardı Mimarisi) nin kısaltılmış şeklidir. Masaüstü bilgisayarlarda kullanılan bir yol mimarisidir. 1983 yılında geliştirilmeye başlandı. İlk geliştirildiğinde 8 bit veri yolu ve 16 bit adres yolu içermekte idi ve 4 MHZ hızındaydı. 16 bitlik mikroişlemcilerin geliştirilmeye başlanması ile ISA da geliştirildi ve 16 bitlik veri yoluna 24 bit adres yoluna sahip oldu. Günümüzde de hala bu standardı geçerlidir. Hızı 8 MHZ ve saniyede 6.5 MB veri aktarır. Yeni geliştirilen bu mimari eski standardı da desteklemektedir. Yani 8 bitlik ISA kartları 16 bitlik bu yol sistemine bağlanabilmektedir. Günümüzde ISA mimarisi artık terk edilmeye başlandı. Zira daha hızlı veri iletimi sağlayan yol sistemleri  kullanılmaya  başlandı. Yeni çıkan anakartlarda, ISA genişleme yuvaları çok konulmamaya başlandı. Hatta bazı anakartlarda artık ISA yuvası bile bulunmamaktadır.
 
            PCI Yolu:  
 
Veri yollarında gelinen en son duraklardan biridir. Peripheral Component Interconnect’in kısaltılmasıdır. VESA yol sistemine benzer bir yapıdadır. VESA yol sisteminden daha yüksek performans sağlar. Gerçekte PCI günümüz masaüstü bilgisayarlarında kullanılan en yüksek performansa sahip yol sistemidir. PCI veriyollarının hızı 20 ile 33 MHZ arasındadır. PCI veri yolu şuan günümüz PC'lerin hepsinde bulunmaktadır. Bunun dışında ayrıca Power PC tabanlı bilgisayarlarda kullanılmaktadır. PC’ler 32 bitlik ve 64 bitlik versiyonları ile piyasada bulunmaktadır. 64 bitlik yeni PCI veri yolu yeni yeni kullanılmaya başlandı. Bu yüzden fazla yaygın değildir.
 
 
 Accelerated Graphics Port’un (hızlandırılmış grafik Portu) kısaltmasıdır. Intel tarafından geliştirilen yeni bir arabirimdir. 3 boyut grafik bilgilerinin daha hızlı işlenmesini sağlamak amacı ile geliştirilmiştir. Grafik verilerini PCI yollarında işlemektense, AGP grafik kontrolörünün direk ana hafızaya ulaşabilmesi için noktadan noktaya direk bir kanal tanımlar. AGP 32 bit genişliğindedir ve 66 MHZ hızında çalışır. Bu saniyede 266 Megabitlik bir veri transferi sağlar ve bu da PCI’dakilerin tam 2 katıdır. (133 MBps). AGP ayrıca 2 tane opsiyonel daha hızlı olan modları destekler. Bunla’da veri transfer hızı 533 MBps ve 1.07 GBps’dir. Buna ek olarak AGP 3-B dolgularının  video belleğinin yerine ana bellekte saklanmasına izi verir
 
AGP ‘nin bir takım önemli gereksinimleri vardır. Bunlar:
 
¨      Chipset AGP’yi desteklemelidir.
¨      Anakart’ta bir AGP slotu bulunmalıdır ya da tümleşik grafik sistemine sahip olmalıdır.
¨     
AGP’nin çeşitli seviyeleri vardır Aşağıdaki özellikler opsiyonel olarak düşünülebilir.
¨      Desenleme (texturing): Ayrıca direk hafıza çalışma modu da denir. Grafik desenlerinin ana bellekte depolanmasını sağlar.
¨      Veri transferi: Çeşitli veri transferi sunulmaktadır. Bunlar 1X: saniyede 266 Megabitlik veri transferini simgeler. 2X 533 Megabitlik 4X de 1.07 Gigabitlik veri transferini simgeler.
¨      Yan band Adresleme: komutları farklı ve paralel bir kanaldan göndererek veri transferini hızlandırır.
¨     
Giriş / Çıkış Kapıları
          Bilgisayara dışarıdan bağlanan tüm bürümler (yazıcı,fare,tarayıcı vs.) bilgisayarın üzerindeki soketlere özel arabirim kabloları ile bağlanırlar. Bu soketlere kapı ya da port adı verilmektedir. Bu soketler paralel ve seri olmak üzere iki çeşittir. Günümüzde standart bir bilgisayarda 1 tane paralel ve 2 tane seri kapı bulunmaktadır. Bunun yanında yeni teknolojilerle birlikte USB kullanımı da artmaya başlamıştır.
 
¨          Paralel (LPT) Kapı (Port)
           Çoğu zaman paralel portlara LPT portu da denilmektedir. LPT LinePrinTer sözcüğünden alınmıştır. Ve bunun sebebi en çok yazıcıları bağlamak için kullanılması gerçeğine dayanmaktadır. Ancak, son yollarda paralel portlar bilgisayara başka tip aygıtları bağlamak için de kullanılmaktadır.Seri (COM) portlar         Seri portlar isimlerini verilerin porttan seri bir biçimde yani bir seferde tek bit olarak gönderilmesi gerçeğinden almaktadır. Bunun sebebi portun her yön için tek bir veri hattına sahip olmasıdır. Seri portlara COM portlar da denilmektedir. Çünkü harici aygıtlarla PC arasında biri iletişim aracı oluşturmaktadır. Seri portlara bağlanan en yaygın aygıtlar modemler, fareler, yazıcı ve çizici gibi seri yazdırma aygıtlarıdır.IEEE 1394
Ekran kartları cephesinde hep tek taraflı incelemelerin yapılması, profesyonel ekran kartları incelemesinin boşlanması ve profesyonel ekran kartlarıyla ilgili bilgilerin çok nadiren verilmesi çoğu kullanıcının kafasında çok önemli soru işaretleri oluşturdu. Bu sorunlardan en önemlisi tercih meselesi. 3D ve CAD/CAM ile profesyonel olarak ilgilenen kişilerin işi OpenGL ile olduğu için, yeni oyunlarda OpenGL destekli ifadesine rastlanması, bu kullanıcı kesiminin kartların oyun performansına bakarak tercih yapmasına neden oluyor. Böyle bir seçimin neden yanlış olduğunu işin ehli kullanıcılar biliyor; fakat yeni nesillere ve yeni kullanıcılara bunu örnek testlerle anlatmak gerekiyordu. Bunların yanı sıra, profesyonel ekran kartlarını oyun kartlarından ayıran unsurlara da değinmek gerekiyordu. Bu konuyla ilgili olarak çok fazla mail gelmeye başlayınca ve haber guruplarında çok tartışılmaya başlanınca bu konuya eğilmeye karar verdik.
Profesyonel Ekran Kartı Nedir?
Genelde "müşteri CAD ile uğraşacakmış" diye tabir edilen ve "profesyonel kesim" diye belirttiğimiz, oyun haricindeki tasarım, modelleme programları için hem donanımsal, hem de yazılımsal olarak özel olarak geliştirilen ekran kartlarına bu ismi veriyoruz.
Biraz önce işaret ettiğimiz gibi profesyonel ekran kartı konseptinin hafiften unutulmasındaki en önemli sebeplerden bir tanesi de oyunlar. Profesyonel tasarım ile uğraşan kişinin genelde OpenGL(3D yazılım arabirimi) ile işi olur. Fakat 98-99 senesinden sonra yeni çıkan oyunlarda OpenGL desteklidir ibaresine rastlanması akılları biraz karıştırdı. Kullanıcılar OpenGL destekli oyunların performansına bakarak tercih yapmaya başladı.

PNY Quadro 700XGL
Bunun haricinde, profesyonel tasarımla uğraşıyorsunuz diye hiçbir araştırma yapmadan da profi ekran kartı alma gibi yanlışlar da yapılıyor. Örneğin, 3D/DCC ile uğraşanlar için yüksek texture performansı gerekirken, CAD/CAM ile uğraşanlar için yüksek doku(texture) yani bellek performansı gerekmiyor. Bu tür konularda da yanlışlık yapılabiliyor.
Oyun Kartı vs. Profesyonel Ekran Kartı
Profesyonel kesimin gidip oyun kartı almasının yanlış olduğundan bahsettik. Peki bu yanlışlar neler? Birinci olarak bilinmesi gereken, 3D oyunlardaki sahnelerde yer alan objeler basit, yani az poligon içerdiğidir. Gerçekçilik efektleri texture(doku) adını verdiğimiz resim dosyalarının, objelerin yüzeylerine bindirilmesiyle elde ediliyor. Profesyonel tasarımda ise sahnede gerçekçilik ön plandadır. Yani objeler çok fazla poligon içerebilir. Dolayısı ile profesyonel tasarım için yüksek poligon performansına ihtiyaç duyulabileceğinin altını çizmek gerekiyor. Gerçekçiliği sağlamada çok fazla poligon kullanılması gerekiyor.
Q3 motorunu taşıyan güncel bir oyunda yaklaşık 8000-9000 poligon kullanılır. Render ise doku ve ışık bilgiler ile edilir. Fakat, örneğin CAD/CAM uygulamalarında karmaşık geometrilerle çalışılır. 256000 üçgene kadar yolu var.
Profesyonel ekran kartlarını, oyun kartlarında ayıran önemli özellik, sürücü desteği. Profesyonel tasarım yazılımları için özel olarak optimize edilmiş sürücüler ve programcıklar gelir profi ekran kartları ile. Ekran kartının performansını sürücüler aracılığı ile kullanılacak programa göre optimize etmek mümkün. Hatta nVidia’nın profi ekran kartı çözümleriyle verilen 3DSMax, AutoaCAD gibi yazılımlar için ufak eklentiler, uygulamadaki kullanılmayan özellikleri kapatarak performansın artmasına imkan tanıyor. İstendiği takdirde de daha fazla kalite için programı modifiye etmek mümkün oluyor. Oyun kartlarında böyle bir sürücü desteğinin olmadığını dikkatli kullanıcıların hepsi bilecektir.


Bir diğer fark, WireFrame performansı. Özellikle 3D/DCC ve CAD/CAM ile uğraşanlar için WireFrame performansı çok önemli. WireFrame’i tel ve çizgi kafesler olarak tanımlamak mümkün. WireFrame’li obje döndürüldüğü zaman geometrik bilgilerin tekrar hesaplanma hızı oldukça önem taşır. Hatta profi ekran kartlarında hardware üzerinden 'Wireframe Anti-Aliasing' desteğinin olduğunu, bu desteğin oyun kartlarında olmadığını da vurgulamak gerekiyor.
OpenGL destekli oyunların hemen her zaman tam ekran çalıştırılmasına karşın, 3D Studio MAX, Maya gibi programların gerektiğinde birden çok pencerede aynı zamanda OpenGL destekli yürütülür. Bu önemli bir farktır. Sürücüler ile birlikte gelen “Unified Back/Depth Buffer” konsepti yardımıyla bellek optimizasyonu sağlanıyor ve birden fazla OpenGL penceresinde işlem yürütülmesini kolaylaştırıyor.
Söylediklerimizin yanı sıra bir de kalite problemleri var. Bir oyun kartı ile profesyonel tasarım ile uğraştığınızda dokularda bazı bozukluklarla karşılaşabilmeniz de mümkün oluyor. Bu, hem iş kaybı hem de zaman kaybı anlamına geliyor.
 
          Paralel portlar isimlerini verilerin porttan paralel bir biçimde, yani bir seferde bir bayt olarak iletilmesi gerçeğinden alırlar. Port sekiz adet veri hattı içerir ve baytın her biti bayttaki diğer bitlerle hemen hemen aynı anda farklı bir hattan iletilir. Paralel portlar LPT1, LPT2 gibi isimlendirilir.
         
   Paralel portlar tek yönlü idi. Yani veriler çevre birimlerine iletilirlerdi. Fakat ters yönde iletilmezlerdi. Çift yönlü paralel port 1987’de ortaya çıktı ve çevre birimlerinin PC ile ters yönde de iletişim kurmaları sağlandı. Örneğin bir yazıcı PC’ye durumuyla ilgili (kağıt sıkışması, kağıdın bitmesi gibi) bilgi gönderebildi. Paralel portlar 25 pinlik bir dişi konnektör kullanırlar.
  
¨       
 
 
Seri portların konnektörleri 2 şekilde olur. 25 ve 9 pin olmak üzere. 25 pinlik bir aygıtı 9 pinlik bir porta ya da 9 pinlik bir aygıtı 25 pinlik bir aygıta bağlamak gibi durumlarda kullanılabilecek adaptörler vardır.
 
Seri portlar ile paralel  portların bir kıyaslaması yapılması gerekirse; seri portlar ile bilgilerin iletilmesi daha güvenilirdir. Çünkü bilgiler tek tek gönderilir. Tabii ki buna göre de yavaştır. Paralel portlar ise seri porttan çok daha hızlıdır. Çünkü bilgileri sekizerli paketler halinde gönderir. Bununla birlikte güvenilir bir veri iletimi sağlamazlar. Özellikle kablo uzunluğu arttıkça verilerin kaybolma riski doğar.
 
Seri port bir seferde bir bit iletmesine rağmen bilgisayar baytlar ile çalışır. Tek şeritli bir yoldan sekiz tane arabanın yan yana geçmesi sağlanamayacağı gibi bir seri porttan da bir baytın geçmesi sağlanamaz. Her baytı seri porttan gönderilebilecek şekilde teker teker bitlerine ayırabilecek bir mekanizmaya ihtiyaç vardır. I/O kartı ya da ana karın üzerindeki I/O kartı üzerinde yerleşik olarak bulunan UART bu işlemi gerçekleştirir. UART’ın açılımı Universal Asencronous Reciever Transmitter (Evrensel asenkron alıcı verici) dır. UART baytları seri porttan gönderilebilecek seri bitlere dönüştürür. UART ayrıca gelen bitlerin PC tarafından işlenebilmesi için bunları baytlara çevirir.
 
¨      USB (Universal  Serial BUS)
USB (Universal Serial Bus) bir bilgisayar ile takılabilir bir aygıt (joystick, klavye, telefon, tarayıcı, yazıcı gibi aygıtlar) arasındaki bir arabirimdir. Tak ve çalıştır özelliği vardır. USB ile yeni bir aygıt herhangi bir bağdaştırıcı kartı kullanmadan ya da bilgisayarı kapatmadan takılabilir. USB yol sistemi Compaq, IBM, DEC, Intel, Microsoft, NEC ve Northern Technology tarafından geliştirildi. USB saniyede 12 Mbitlik bir veri transfer hızı sağlar. Tek bir USB portu ile 127 tane çevre kullanılabilir.
Ekim 1996’dan beri, Windows işletim sistemi USB sürücüleri ya da belirli I/O aygıt tipleri ile çalışmak için dizayn edilmiş özel yazılımlar ile donatıldı. USB Windows98 işletim sisteminde tümleşiktir. Bugün birçok yeni bilgisayar ve çevre birimi USB ile donatılmış durumdadır. Günümüzde artık USB iyice yaygınlaşmış durumda. Yakın bir zamanda tamamiyle seri ve paralel portların yerini alacağı düşünülmektedir.
 
¨     
 Saniyede 400 megabitlik veri transfer oranını destekleyen yeni ve hızlı bir yol standardıdır. 1394 teknolojisini destekleyen ürünler şirkete bağlı olarak farklı isimler altında toplanmışlardır.  Apple bu teknolojiyi orijinal olarak geliştiren firmadır. Bu teknoloji için firewire ismini kullanmaktadır
Tek bir 1394 portu 63 tane dışsal aygıtı bağlayabilir. Çok hızlı ve esnek olmasına rağmen 1394 çok pahalıdır. USB gibi 1394’ün de tak ve çalıştır özelliği vardır. Ayrıca çevre birimlerine güç de sağlarlar.  1394 ve USB arasındaki ana fark 1394 standardının daha hızlı ve daha pahalı olmasıdır. Bu nedenlerden , video kamera gibi yüksek veri transfer hızı isteyen aygıtlar için kullanılması beklenir. Bununla birlikte USB birçok çevre birimini bağlamak için kullanılabilir.



Ses Kartı

 

 

Ses Kartları

Üretilen ilk bilgisayarlarda hedeflenen gaye istenilen bilgiye ulaşmaktı. Bilgisayarın vereceği ufak tefek sesli ikazlar için küçük bir hoparlör yeterliydi. Zamanla bilgisayarın yapabileceği kabiliyetler keşfedildikçe ortaya müzik çalabileceği, oyun oynanabileceği çıktı. Fakat mevcut hoparlör ile kaliteli ses almak mümkün değildi. Böylece ortaya daha kaliteli ses almaya yarayan ses kartları çıktı.

Ses kartlarının kullanılmasındaki amaç sesleri kaydetmek ve daha sonra çalmaktır. Ses kartları ile birlikte video – grafik uygulamalarının gelişmesi ile multimedya ortaya çıktı ve bir bilgisayar için vazgeçilmez bir kavram halini aldı.

Ses kartları sesi kullanmak için analog biçimdeki sesi dijital biçime çevirir. Bu işlem için bir ADC (Analog to Digital Convertor –Analog Dijital Çevirici) kullanılır. Bu işlem yapılırken örnekleme (sapling) metodu kullanılır.

Örnekleme hızı ses örneğinin kalitesini belirler. Bu değer bir ses örneğinde saniyede kaç analog değerin sayısallaştırıldığını gösterir. Bir saniye içerisinde kaç tane örneğe ihtiyacımız olduğu Nyquist teorisiyle bulunur. Bunun için “N=2 x sinyal bant genişliği” formülü kullanılır.

Bir örnek çalındığında üretilen en yüksek frekans kullanılan örnekleme frekansının yarısıdır. Meselâ 12 KHz’e kadar sesleri üretebilmek için kullanılması gereken en düşük frekans 24 KHz’dir. Verilen bir örneğin kalitesini belirleyen bir başka faktör de örnekleme derinliğidir. Bu değer analog işaretin kodlanması için kodlayıcının kullandığı bit sayısını belirtir.

Bir örnek için gerekli veri miktarı örnekleme hızı ve derinliği arttıkça artar. Böylece bir dakikalık bir konuşmayı çalmak için gerçekçi bir örnekleme frekansı olan 11,025 KHz ve 8 bitle örneklersek 11025 x 60 byte yer tutar. Daha yüksek kaliteli ses almak için müzik CD’lerinde olduğu gibi 16 bit ve 44 KHz. örnekleme kullanılır. Tabi bu durumda 4 dakikalık bir şarkının kapladığı alan 21 MB gibi bir alan kaplar. Ayrıca stereo özelliği de kullanılırsa bu alan iki katına yanı 42 MB a kadar çıkar. Günümüzde bu alanı daraltmak için MP3 gibi çeşitli sıkıştırma yöntemleri kullanılmaktadır.

Gelişen ses kartı teknolojisi ile günümüzde çok gerçekçi sesler almak mümkündür. Meselâ Creative Sound Blaster Live ses kartı ile mükemmel sesler alınabilmektedir. Bu ses kartı kullandığı özel hoparlörler aracılığıyla surround ses verebilmektedir.


Ekran Kartı
 Görüntü kapasitesini bilgisayara vermek için takılan bir karttır. Bir bilgisayarın görüntü kalitesi hem ekran kartına ( Görüntü bağdaştırıcı) hem de monitör’e bağlıdır. Örneğin Bir Monochrome monitör,  görüntü bağdaştırıcınız ne kadar kuvvetli olursa olsun renkleri görüntüleyemez.
Birçok farklı tipte görüntü bağdaştırıcısı günümüzde bulunmaktadır. Bunlardan en uygun görüntü standartlarını IBM ve VESA firması tarafından tanımlanmaktadır.  Her bağdaştırıcı farklı video modları sunar. Video modlarının iki temel kategorisi text ve grafik modudur. Text modunda bir monitör yalnızca ASCII karakterleri görüntüleyebilir. Grafik modunda ise bit eşlemli şekilleri görüntüleyebilir.  Text ve grafik modlarının içinde bazı monitörler çözünürlük seçeneği sunarlar. Daha düşük çözünürlükte bir monitör daha çok renk görüntüleyebilir.
Çözünürlük
256 renk  (8-bit)
65,000 renk(16-bit)
16.7 milyon renk (24-bit,gerçek renk)
640x480
512K
1 MB
1 MB
800x600
512K
1 MB
2 MB
1,024x768
1 MB
2 MB
4 MB
1,152x1,024
2 MB
2 MB
4 MB
1,280x1,024
2 MB
4 MB
4 MB
1,600x1,200
2 MB
4 MB
6 MB
 
Modern bağdaştırıcılar bir bellek taşırlar. Böylece bilgisayarın belleği görüntüleri depolamada kullanılmak zorunda kalmaz. Buna ek olarak çoğu bağdaştırıcının grafik hesaplamalarını gerçekleştirmek için kendi grafik işlemcisi vardır. Bu bağdaştırıcılara grafik hızlandırıcı (graphic accelerators) denir.  Günümüzdeki çoğu monitör görüntüleri göstermek için analog sinyalleri kullanırlar. Görüntü bağdaştırıcısının Yaptığı işlem de bilgisayardan ekrana gidecek olan görüntünün dijital bilgisini alır. Kendi belleğinde depolar  ve bunu analog sinyallere çevirerek monitöre gönderir.
 
Çözünürlük: Çözünürlük bilgisayar ekranındaki bulunan pixel sayısıdır. Yatay ve dikey ekrandaki pixel sayısı terimleri ile ifade edilirler. Çözünürlük bir inch’de bulunan pixel sayısı olarak ifade edilse de durum bilgisayar monitörlerinde biraz farklıdır. Bilgisayar monitörü için verilen çözünürlük; bilgisayarın yatay ekseninde ve dikey ekseninde bulunan pixel sayısını verir. Örneğin Bir monitör için 800’e  600 çözünürlük bilgisi veriliyor ise; Bunun anlamı yatay eksende 800; dikey eksende de 600 pixel bulunduğudur. Toplamda ise 800*600 pixel görüntülenebilir. Çözünürlük arttıkça görüntülenen şeklin netliği artar; fakat görüntülenen şeklin ise boyutu bilgisayar ekranında küçülür.
Aşağıdaki tablo farklı çözünürlükler için ihtiyaç duyulan Video belleğini (Video RAM) göstermektedir.     
Bilgisayarın sesi kullanmasını ve daha sonrada bu sesi çıkarmasını sağlayan bir karttır. Ses kartı günümüzde bütün bilgisayarların artık bir parçası haline geldi. Ses kartının yaptığı iki iş vardır. Bunlardan birincisi sesin bilgisayardaki hoparlörden çıkması için dijital sinyalleri analog sinyallere çevirir. Sesi kayıt etmek için de bir mikrofon aracılığı ile analog sinyalleri dijital sinyallere çevirir ve diske kaydeder.  Yapısında bu ses dosyalarını işlemek için bir özel bir işlemci ve de bellek vardır. 



TARAYICI
Tarayıcının Çalışma Prensipleri
TARAYICI
Bir tarayıcı fotoğraf gazete kupürü gibi resim veya grafikleri sayısallaştırabilmenizi sağlar. Eldeki resim ışığa duyarlı yarıiletken elemanlar (LDR’ler) tarafından taranır. Bu elemanlardan alınan işaretler RAM’a yazılacak byte dizileri haline getirilir. Dizi buradan ekrana aktarılır veya bir dosyaya saklanır.
Bir tarayıcıyı kurmak 
Bir tarayıcıyı kullanmak için tarayıcı tarafından okunan bilgiyi PC’ye aktaracak özel bir arabirim kartına ihtiyaç vardır. Bu da genellikle 8 bitlik bir kart olduğundan bir kısa genişleme yuvası tarayıcı kurmak için yeterli olacaktır. Farklı tarayıcı üreticileri tamamen farklı veri aktarma yöntemleri kullanmaktadırlar. Bu nedenle tarayıcıyı başka bir üreticinin ara birim kartıyla çalıştırmak mümkün değildir. Bu durumda tarayıcının bağlacının (connector) arabirimine uymadığını da gözle görürsünüz.
Bir çok tarayıcı ara birim kartı DMA (Direct Memoıy Access / Doğrudan Bellek Erişimi) sistemini kullanır Bunun anlamı kartın tarayıcının gönderdiği bilgiyi ayrılan bir bellek alanına yerleştirmesidir. Çalışan yazılım daha sonra veriye bu alandan erişir. Bir çok arabirim kartı bir atlama (jumper) ayarlaması ile DMA kanalının seçilmesine izin verse bile genellikle varsayılan (default) ayarın değiştirilmesine gerek kalmaz.
            Bir çok kart üreticisi tarafından doğru şekilde ayarlanmıştır. Eğer sisteminiz tarayıcınızı kurduktan sonra DMA çakıştırılmasıyla karşı karşıya kalırsa tarayıcı kartınızdaki ayarlarda bir başka DMA kanalını seçmelisiniz. Ne yazık ki bu işlem tarayıcıya bağlı olarak değişir. Bu nedenle varsayılan konfigürasyonu değiştirmeniz gerekirse tarayıcıyla verilen dokümanı okuyunuz. Eğer kartı hangi konfigürasyonda çalıştırmanız gerektiğinden emin değilseniz çekinmeden değişik ayarları deneyiniz. Ancak bir değişiklik yapmadan önce mevcut ayarları bir kenara yazmayı unutmayınız.
Genellikle ikinci bir anlatma ayarı da tarayıcı kartının bağlantı noktası (port) adresinin seçilmesini sağlar. Yine, varsayılan ayarlar genellikle doğrudur. Sadece eğer sisteminizde bir ağ kartı veya bir modem  kartı gibi çakışma yaratabilecek genişleme kartları varsa bu kartlardan birinin bağlantı noktası ayarını değiştirmeniz gerekebilir.
Genellikle eski tarayıcı sistemlerini kullanmak için hazırdaki bir donanım kesmesi (IRQ) gerekir. Bu durumda 8-bitlik bağdaştırıcı kartlarıyla problemler yaşayabilirsiniz. Buradaki Problem ek bağlantı noktalan yerleştirirken karşılaşılanın aynısıdır. 8-bitlik bir yuvada sadece 8 IRQ kullanılabilir ve bunlar genellikle halen kullanılıyordur. Çakışma genellikle ya olması gerektiği gibi IRQ7’yi veya diğer durumlarda IRQ5’i kullanan yazıcı arabirimiyle olur. Öyle ise tarayıcımızı yazıcı arabiriminin kullanmadığı bir kesmeye ayarlamalısınız. Eğer elinizde hangi kesmelerin kullanıldığını gösteren bir test programı yoksa önce IRQ5’i denemenizi öneririz.
          Ayrıca tarayıcımız belki ikinci seri bağlantı noktasının (COM2) kullandığı IRQ3 kesmesini paylaşarak da çalışabilir.
Bir kartın bağlantı noktası adresini, DMA kanalını veya bir IRQ değiştirdiyseniz yeni ayarlan aktifleştirebilmek için kullanmakta olduğunuz yazılımın tamamını yeniden yüklemek veya yeniden düzenlemek zorunda kalabilirsiniz. Özellikle ağ kartlarındaki değişiklikler karmaşıktır. Bu durumda bütün ağı yeniden kurmanız gerekebilir. Bunun için ağ kartında bir değişikliği ancak diğer kartların ayarlarıyla oynayarak, ki burada söz konusu tarayıcı kartıdır, problemi çözemiyorsanız yapın.
Kaliteli bir tarayıcı seçmeden önce DPI ve gri seviyesi terimlerini anlamanız gerekir. Bu terimleri aşağıdaki örnekle açıklayanız.
Diyelim ki 10*10 inch (24.5 * 24.5 cm) boyutlarında bir resmi 800 DPI (Dost Per Inch / Inch Başına Düşen Nokta) çözünürlükte ve 256 gri seviyesi ile taramak istiyorsunuz. Bunu yapmak için 64 MB boş belleğe ihtiyacınız olacaktır. 256 gri seviyeli bir görüntü piksel (dot) başına bir bayt gerektirir. Böylece yukarıda bahsedilen resim toplam 64 milyon (8000 * 8000) pikselle taranacaktır.
Eğer bu resmin bu çözünürlükte bir baskısını istiyorsanız yazıcınızın 256 gri seviyeyi gösterebilmesi için her piksel başına 16 * 16’lık bir matrisi basabilmelidir. Bu gereklidir çünkü yazıcılar gri seviyeleri ancak değişen sıklıkta noktalar basarak oluşturabilirler. 300 DPI çözünürlüğü olan bir lazer yazıcı dahi kullanılsa ortaya çıkan baskının eni ve boyu 8000 * 16 /300 veya yaklaşık 430 inch (10 metre) olurdu.
Sonuçta çıktınız 100 metrekare bir alanı kaplardı ve 1970 sayfa tutardı. Dakikada 4 sayfa baskı hızında bütün resmin basılması sekiz saatten fazla sürerdi.
Yukarıdaki örnekle anlatmaya çalıştığımız gibi iyi bir tarayıcı ille de müthiş çözünürlüklerle veya gri seviyelerle karakterize edilmez. Bir tarayıcı bu yeteneklere sahip olsa bile PC sisteminden beklentileri PC’nin boyunu aşar. Bu yetenekler ancak posta pulu büyüklüğünde resimler sayısallaştırıp sonra büyütecekseniz yararlı olabilir. Birçok durumda 300 DPI çözünürlükte ve 16 gri seviyeli bir tarayıcı yeterli olmaktadır. Bu çözünürlükte mümkün olan sonuçlan düşünürseniz hiç gri seviyesi olmayan (siyah beyaz) bir tarayıcıya da karar verebilirsiniz.
İyi bir tarayıcının göstergelerinden biri de tarayıcıyla birlikte gelen yazılımdır. Genellikle bu bir tarayıcının en moral bozucu özelliğidir. Sıklıkla yazılım uzatılmış (extended) bellek kullanamaz, veya taranan resmin belli kısımlarını sabit diskinizde saklayamaz.
Bu programlarla kullanılan alışılmış belleğin sınırlı olması nedeniyle oldukça küçük resim formatları taranabilir. Bunun için tarayıcıyla birlikte gelen yazılımın üreticinin reklamlarında söylediği performansı gösterip göstermediğini her zaman belirlemelisiniz.
Bazı el tarayıcılarının yararlı bir aksesuarı da dokümanları düzgün bir doğru takip ederek taramanızı sağlayan kılavuz cetvelidir. Bu basit alet görüntü kalitesini önemli ölçüde arttırmaktadır.
Yakın bir zamana dek çok fazla kullanılmayan tarayıcılar, özellikle multimedia, yayıncılık ve tasarım gibi uygulamaların gelişmesine paralel olarak hızla yayıldı Klavye, fare vb. veri giriş aygıtlarıyla, metinleri, harfleri ve rakamları bilgisayara aktarmak mümkündür ama, görüntüler söz konusu olduğunda klasik veri giriş yöntemleri işe yaramaz. Giderek görüntülerin de standart veri türleri arasına girmesi ve PC’lerde grafik ortama geçilmesi, tarayıcıları yaygınlaştırdı. Tarayıcıların daha önceden, bugünkü kadar popüler olamayışlarının bir sebebi de, taranmış görüntülerin bellekte çok fazla yer tutmasıydı. Bir kitap dolusu metin, sabit diskinizde (kitabın boyutlarına göre) 100 ya da 300 KB’lık yer kaplarken, taranmış bir görüntü 5-10-20, bazen 50 MB (resmine göre!) yer tutabiliyor.
        Tarayıcıların çalışma ilkeleri basittir. Taranacak nesne (kağıt), üst tarafından alta doğru satır satır ışığa duyarlı elektronik elemanlar tarafından taranarak sayısallaştırır. Tarayıcının daha iyi yapılabilmesi için nesne, bir ışık kaynağı ile aydınlatılır. Taranması istenen görüntü, üzerinden ışık kaynağı geçtikten sonra bir mercek aracılığıyla, fotoelektrik hücrelerden oluşmuş bir görüntü algılayıcı (image sensor) üzerine düşürülür. (Yani, ışık değerleri ölçülür, ölçüm değerine göre bir voltaj değeri üretilir.) Değişen voltajlarda elektrik impals üreten bu algılayıcı, daha ışıklı ve daha açık tonlardaki desenleri yüksek voltajla, koyu desenleri ise düşük voltajla gösterir. Analog voltaj sinyali, bir tür modem gibi işleyen analog-sayısal dönüştürücü yongası ile sayısallaştırılarak PC’nin belleğine aktarılır. Sinyaller, görüntü dosyası formatında disk ortamına kaydedilir. Daha sonra bu dosya üzerinde görüntü programları ile işlem yapabilirsiniz...
Tıpkı monitörler ve lazer yazıcılar gibi, tarayıcılarda da görüntüler çok küçücük noktalardan oluşur. Yani aynı şekilde, birim alana düşen nokta sayısı ne kadar yüksekse, elde edilen görüntü o kadar kaliteli olacaktır.
Günümüzde profesyonel yayıncılıkta kullanılacak bir tarayıcının çözünürlüğü en az 2400 dpi olmalıdır. Multimedia gibi uygulamalarda ise, taranan resimler basılmayacağı, sadece ekranda görüneceği için daha düşük çözünürlükle yetinilebilir.
Tarayıcılar, sadece çözünürlüklerine göre değil, algılayabildikleri renk sayısına göre de farklılık gösterirler. Renkli görüntüler bilgisayarda çok daha fazla yer tuttuğu için, genellikle ve sıkıştırma programları da kullanılır.
Profesyonel olmayan uygulamalarda, daha küçük boyutlarda olan el tarayıcıları kullanılabilir. Sayfa üzerinde gezdirilerek kullanıldıkları için el tarayıcılarının küçük bir üstünlükleri vardır: Bir kitaptan bir görüntüyü taramak istediğinizde, sayfayı yırtmak yada kesmek zorunda kalmazsınız... Ayrıca ucuz ve pratiktirler. Masa üstü tarayıcıları ise, tıpkı fotokopi makinesi gibi kullanmak zorundasınız.
0CR (Optical Character Recognition) Optik Karakter tanıma
Tarayıcıların getirdiği yeni bir olanak, görüntüler gibi yazıların da kağıttan bilgisayara aktarılmalarını sağlamalarıdır. Ancak, tarayıcı ile PC’ye aktarılan bir grafik dosyasına yazılan metinler, bilgisayar tarafından resim olarak görülür. Bir fotoğraftan farkı olmayan grafik dosyasının içindeki yazılar, 0CR (Optical Character Recognition; Optik karakter tanıma) adı verilen programlar vasıtasıyla çözümlenip metin dosyalarına çevrilir.
Böylece kağıt ortamındaki bir yazı, insan eliyle herhangi bir müdahaleye ve klavyeden tekrar veri girişine gerek kalmadan bilgisayara aktarılabilir. OCR programıyla ASCII metinlere dönüştürülen yazı üzerinde istenen şekilde işlemde yapılabilir. Üstelik, yazıların görüntü dosyası olarak değil de metin dosyası olarak saklanması çok daha az yer gerektirir.
Bilgisayarın kalıcı bellek kapasiteleri geliştikçe kağıt ortamındaki arşivler, tarayıcılar vasıtasıyla elektronik ortamlara aktarılıp saklanabilecek. Böylece istenen belgelere çok daha hızlı ulaşmak mümkün olabilecek, belgelerin zamanla bozulmasından dolayı oluşacak kayıplar kalkacak, bilgilerin işlenmesi kolaylaşacak, gerekli fiziksel saklama alanı azalacak...
Bunların hepsi iyi güzel de, bütün çabalara rağmen OCR yazılımlarının yüzde yüz hatasız çalışması mümkün değil hala!
OCR yazılımları genellikle karmaşık teknikler algoritmalar kullanır. Eski OCR teknolojisi, üst çizimde görülen matris yöntemine dayanırdı. Bu yöntem, taranan harfi bir matris içine yerleştirerek matrisin hangi hücrelerinin siyah olduğuna bakmaktan ibaretti. Elde edilen matris, harf kütüphanesindeki bir harf ile eşleştirilmeye çalışılıyordu. Fakat bu yöntemde farklı karakter tipleri (fontlar) büyük bir problem teşkil ediyordu; değişik fontlarla yazılmış yanı P harfi, matrisin değişik hücrelerinin siyah olmasına yol açıyor, bu da hatalara sebep oluyordu. Ortadaki çizim ise, “omnifont” adı verilen daha yeni bir teknolojiyi gösteriyor. Bütün fontları algılayabilen bu yöntem, harfleri bileşenlerine ayırıyor, bu bileşenleri içeren karakterleri yakalamaya çalışıyor. Örneğin P harfinin, dikey bir çizgi, bir daire ve bir yatay çizgiden oluştuğu varsayılarak bu karakteristikler taranan metinde yakalandığında P harfine çevriliyor.
Daha yeni bir teknoloji ise, “maksimum entropi” ilkesine göre işliyor: Taranmış metinde varolan lekelere yenilerini ekleyerek eski anlamsız lekelerden kurtulabiliyorsunuz!
Karakter tanıma, tek bir font söz konusu olduğunda çok daha kolay bir işlem. Oysa günümüz teknolojisi, bilgisayarın el yazısı dahil, pek çok değişik fontu da algılayabilmesini sağlamaya çalışıyor: PC’nizin, her bir fontun harflerini belleğinde tutup, “bu acaba Helveticanın a’sı mı, yoksa Times’in b’si mi?” diye tarama yapması hiç de kolay değil... Genelde, bizler, hangi fontla basılırsa basılsın, ne kadar güç okunur bir el yazısıyla yazılmış olursa olsun, harfleri tanırız ve karıştırmayız. Neden, çünkü tek bir harfin “a” mı yoksa “o” mu olduğunu anlayamasak da, cümlenin gelişi, dilimizin kelime haznesi yardımımıza koşar. “Bilgisayar” diye bir sözcük olmadığı için, a harfini 1 diye görsek bile sorun çıkmaz...
Bu durumdan hareketle, tek tek harflerden ziyade bütünden anlam çıkarmaya çalışan yöntemler geliştirildi. El yazısında da başarı sağlamaya çalışan bir yöntem harfleri topolojik özellikleri çözümleyerek belirliyor ve bu öğrendiklerine göre işlem yapıyor...
Karakter tanıma yazılımları, hata ortamını sıfıra indirmek için karmaşıklaştıkça daha fazla güç daha fazla hız gerektiriyorlar. Bu nedenle, yeni kuşak
PC’lerin, OCR uygulamalarında daha başarılı olacağı kesin


.
CD-ROM ve CD-Writer
 
 
CD-ROM’lar disk ve disketler gibi veri depolamak için kullanılan birimlerdir. Veri kaydetme prensibi manyetik ortamlarda olduğu gibi mıknatıslanma esasına dayanmaz. Optik mantıkla veriler kaydedilirler. CD-ROM’ların çalışma prensibi bir metal veya plastik disk üzerine LASER ışını ile oyuklar açmaktır. Bilindiği üzere verilerimiz bilgisayarda 0 ve 1 şeklinde işlenir ve depolanır. Burada sıfır ve biri temsil edenler ise oyuklar ve tümseklerdir. Bu şekilde oyuklar ve tümsekler oluşturulduktan sıra bunların okunmasına gelmiştir. CD-ROM sürücüler bu okuma işlemini gerçekleştirirler. CD-ROM sürücünün okuma/yazma kafası yoktur. Bunun yerine laser ışınını  veri üzerine gönderen ve yansımaları sınıflandırarak elektrik sinyallerine çeviren bir eleman vardır. CD-ROM’lar çok büyük veri saklama kapasitelerine sahiptirler. Bir CD-ROM yaklaşık 650MB’lık bilgi saklayabilir. Bnun yanında CD-ROM güvenilir veri saklama birimleridir. Bilgiler fiziksel oyuklar ile oluşturulduğu için CD-ROM üzerine herhangi bir çizik gibi fiziksel hasarlar yapılmadığı sürece bilgiler uzun süre saklanabilir. Bununla birlikte CD-ROM’lara bilgiler yalnızca bir defa yazılabilir. Birden fazla kez yazılabilen CD-ROM’lar da vardır. Bunlara Rewritable  CD-ROM denir. Bu ortamlar yaklaşık 1000 kez kullanılabilirler.
CDROM’ların okuma hızları 8X, 10X, 36X, 48X gibi sayılarla ifade edilirler. Peki bunlar ne anlama  gelirler. Bir CD-ROM sürücünün 8X hızında olması demek saniyede 8*150KB’lık veri okuyabilmesi demektir. Bu da yaklaşık sanide 1,2 MB’lık veri transferi sağlar.
CD Writer’lar kaydedilebilir CD-ROM’lar üzerine bilgi kaydetmek için kullanılırlar. Gene CD-ROM sürücülerde olduğu gibi bir lazer tabancası vardır. CD Writer’lar CD-ROM’un üzerine oyukları oluşturmak için daha fazla bir enerji uygularlar. CD Writer’lar aynı zamanda CD-ROM’dan bilgi okumak için de kullanılır. Bu sefer de bilgiyi okurken daha az enerji uygularlar. CD-Writer’ların hızlarını temsil etmek için üç tane hız göstergesi kullanılır. Örneğin 8X 4X 24X yazan bir CD Writer’ın yazma hızı 8X (8*150KB) yeniden yazılabilir CD-ROM’lara yazma hızı 4X (4*150KB) okuma hızı ise 24X (24*150 KB)’dır. Cd writerların belirli bir yazma ömrü vardır. Yazmak için kullandığı yüksek laser ışınından dolayı CD writer zarar görür. Bu CD writer’ın kalitesine göre 5000 CD-ROM’a kadar çıkabilir.






İŞLEMCİ


İşlemcinin Çalışma sürecini, İşlemci türlerini ve aralarındaki farkları söyleme
 Mikroişlemci Bilgisayarın Merkezi İşlem birimi olarak çalışan büyük ölçekli ya da çok büyük ölçekli devrelerdir. Mikroişlemci entegre devresi, yazılan programları meydana getiren makine kodlarını yorumlamak ve yerine getirmek için gerekli olan  tüm mantıksal devreleri içerir.
Bir mikoişlemci temel olarak iki bölümden oluşur.
Kontrol Birimi:  Bilgisayara diğer ünitelerin ne yapması gerektiğini bildiren kısımdır. Böylece bilgisayarı yönlendirerek programda verilen emirlerin eksiksiz olarak yapılamasını, gerekli bilgilerin belleğe yerleştirilip alınmasını ve yapılan işlemlerin kontrolünü sağlar.
Aritmetik-Mantık Birimi (ALU): Tüm mantıksal ve matematiksel işlemlerin yapıldığı kısımdır. Bilgisayarda yapılan dört işlem, üs alma gibi aritmetiksel işlemlerle küçük, büyük , küçük eşit, büyük eşit gibi mantıksal işlemlerde bu bölümün mantık devrelerinde yapılır.
Mikroişlemcinin hızı saniyede yapılan işlem ile ölçülür. Hız ölçü birimi olarak Megahertz (MHZ)  kullanılır.
Günümüzde kullanılan mikroişlemciler MOTOROLA, INTEL,AMD ve CYRIX’dir. Bunlardan motorola özel amaçlı bilgisayarlarda kullanılan bir İşlemcidir.  Apple’ın çıkardığı POWER PC makinalarında kullanılmaktadır. Masaüstü bilgisayarlarda ise INTEL, AMD ve CYRIX kullanılmaktadır. Bunlardan piyasayı elinde bulunduran ise INTEL’dir. Cyrix çıkardığı birkaç işlemci türünden sonra artık işlemci üretmemeye başlamışlardır. AMD ise şuan INTEL ile büyük bir yarış içerisindedir. Son çıkardığı işlemcilerin bazı testlerde INTEL’i geçtiği olmuştur.
Intel’in çıkardığı işlemciler teknolojik sıralamaya göre 8088,8086, 80286, 80386, 80486, Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium Celeron ve Pentium III’dür.
8086 mikro işlemci 20 bit ile bellek adresleyebilen 20 bitlik adres yolu kullanan bir mikroişlemcidir. 8086 bir mikroişlemci 1 MB’lık (220) bellek adresleyebilir.
8088 mikro işlemci, 16 bit üzerinden işlem yapan veri yolu 8 bit olan bir mikro işlemcidir.
80286 Mikro işlemci, adres yolu 20 bit iç ve dış veri yolu 16 bit ve 16 MB’a kadar belleği doğrudan adresleyebilirler.
80386 Mikro işlemci, SX ve DX olarak piyasaya sürülen 386 işlemcilerin adres yolu 32 bit olup 4 GB’lık ana bellek adresleyebilir. SX işlemcinin dış veri yolu 16, iç veri yolu 32 bittir. Saat hızı 16-33 Mhz’dir. DX işlemcisinin hem iç hem de dış veri yolu 32 bit saat hızı 33-40 MHZ’dir.
80486 Mikro işlemci, iç ve dış adres yolu 32 bit olup 4 GB adresleyebilen bir mikro işlemcidir. Saat hızları 25 ile 100 Mhz arasında olan çeşitleri vardır. SX modelinde matematik işlemci yoktur. DX ve DX2 modellerinde matematik işlemci olup işlemcinin içinde 4 KB veri ve 4 KB komut önbelleği vardır.
Pentium Mikro işlemci, Intel firmasının 1994 yılında piyasaya sürdüğü 32 bitlik iç 64 bitlik dış veri yolu kullanan, adres yolu 64 bit olan mikro işlemcidir. 8 KB veri 8KB komut olmak üzere toplam 16 KB’lık önbelleği vardır. Saat hızı 66 ile 200 MHz arasında değişmektedir.Pentium işlemcide 3.1  milyon tane transistör vardır.
Pentium  Pro mikroişlemcide Pentium işlemciye ek olarak 256 KB’lık bir L2 ön bellek vardır. Bu işlemlerinde ona hız kazandırmıştır. Saat frekansları 166 ile 200 arsında değişmektedir.  5.5 milyon transistör barındırır.
Pentium MMX (MultiMedia eXtension) Eski pentium işlemcilere göre 1.5 kat daha fazla transfer içeren ve pentium işlemcilerle tamamen uyumlu  uyum olan işlemcilerdir. Pentium MMX işlemcilerin 166, 200 ve 233 MHZ hızıında çalışan modelleri vardır. Bu işlemci multimedya (çoklu ortam yazılımları, oyunlar, MPEG gibi grafik tabanlı yazılımlar) uygulamaları için özel komutlar içerir. Ayrıca pentiumlar 16 KB olan önbellek miktarı MMX’de 32 KB’a çıkarılmıştır.
Pentium II Pentium pro işlemcisi ile MMX işlemcisinin birleşimi ile 1997 de orta çıkarıldı. 233,266,300,400 ve 450 MHZ saat hızında çalışan işlemcilerdir. Bu işlerin diğerlerinden farkı SEC (single Edge Contact) adı verilen genişleme yuvalarına (slot) takılan bir işlemcidir. İşlemci anakart üzerindeki Slot-1 adı verilen özel yuvaya takılır. Pentium II işlemcilerde 32 KB’lık bir L1 önbellek ve 512 KB’lık L2 önbellek içerir.
Pentium Celeron Pentium II işlemcilerinin pahalı olması nedeniyle çıkarılan Pentium II işlemcinin ucuz sürümüdür. Aralarındaki temel fark 512 L2 önbelleğinin Pentium Celeron işlemcilerde olmamasıydı. Fakat L2 önbelleğinin olmaması büyük performans düşüklüklerine yol açtığından sonraki sürümlerinde 128 KB’lık bir önbellek konuldu.
Pentium III  Pentium III’le birlikte 3-D, konuşma tanıma, video ve ses uygulamalarını destekleyen 70 tane komut eklenmiştir. Bununla birlik yeni komut seti SIMD (single Insruction Multiple Data)’ komutlarını  desteklemektedir. Bu komutlar bir komut ile çoklu hafıza bölgelerindeki verilerin eş zamanlı olarak düzenlenmesine izin vermektedir. PIII’ler 800 Mhz’e kadar saat hızı sunmaktadır. Pentium III’lerin ilk çıktığında 32 KB’lık L1 512 KB’lık L2 önbellekleri vardı. Fakat 128 KB’lık L1 ve 512 KB’lık L2 önbelleğine sahip AMD’nin Athlon işlemcisi testlerde Pentium III’ü geçince Pentium III işlemcisini yeniledi. Yeni çıkan işlemcisinde L2 önbellek miktarını 256 KB’a düşürdü fakat bu önbellek işlemci ile aynı hızda çalışmakta idi. Bir önceki PIII’de ise L2 önbellek işlemcinin yarı hızında çalışmakta idi.

 Pentium IV Yapım Aşamasındadır. 

İşlemcilerle ilgili bir yazı hazırladığımız zaman, başlangıç olarak genelde "İşlemci hızları, aldı başını gidiyor." şeklinde başlar. Bu sefer bu cümle ile başlamayalım ne dersiniz?
Yeni bir sistem olşutururken, sistem hızının sadece işlemci hızına bağlı olmadığını uzun zamandır vurguluyoruz. Tamam, işlemci hızı elbette ki önemlidir fakat, 1 GHz'lik bir işlemcili bir sisteme 64 Mb bellek ve 5400 devir dönen bir disk takmak tabii ki saçmalık. Bu sistemin karşısına dikeceğiniz, 7200 devir diske sahip 128 MB bellekli, 600 MHz'lik işlemciye sahip bir bilgisayar, o 64 MB bellekli 1 GHz'lik işlemciye sahip bilgisayardan kat kat daha hızlı çalışır.

Biliyorsunuz, son zamanlarda overclocking olayı ciddi seviyede arttı ve hemen hemen her kullanıcı, kendi sisteminde kullandığı "bazı" parçaları overclock ederek, daha fazla performans elde etmeye çalışıyor. Bu konuya yeni olanlar için "Overclock" kavramını kısaca özetlemek, sanırım, yerinde bir davranış olacaktır.

Overclock, "Bir parçayı sahip olduğu hızdan daha yüksek hızlarda çalışmaya zorlamak" şeklinde özetlenebilecek bir kavram. Örnek mi? Mesela, ben elimde bulunan 600 MHz'lik işlemcimi, birazcık kurcalayarak 650 MHz'de çalıştırdım. İşte bu overclock işlemi. Ekran Kartımın bellekleri 166 MHz'de çalışıyor. Ama ben bunları, birazcık ayar ile 200 MHz'de kullanıyorum. İşte bu overclock işlemi. Overclock lafı, İngilizce bir kelime olduğundan, birazcık bizlere ters geliyor. Ama "Overclock" lafına karşılık gelen doğru düzgün bir Türkçe kelime benim aklıma gelmiyor.

Overclocking, Ama Neden?

Yazının giriş bölümünde birazcık laf çıtlattık. Eğer sistem alt yapsı zaten güçlü ise neden overclock işlemine ihtiyaç duyalım? Ya da overclock işlemi ile ne kadar performans artışı elde edebileceğim? gibi bin bir türlü soru akla geliyor.

Öncelikle, kullanıcıları overclock işlemini, performans artışı elde etmek için yapıyorlar. Esas amaç bu. Ama etrafınıza dikkatlice baktığınıza bir kaç ilginç noktaya rastlayacaksınız. "Yaramaz" olarak nitelendirdiğimiz kullanıcı kesimini ilk başta hedef olarak alalım. Bu arkadaşların bir çoğu, işlemcilerini tam anlamıyla kullanmadığı halde overclock olayına girişiyorlar. Mesela, günlük olarak her sabah bilgisayarını açan, internete bağlanan, maillerini kontrol eden, haber okuyan birisi için overclocking işlemi gereksizdir. Zaten işlemcini tam gücüyle kullanmıyorsun. Ne gerek var şimdi overclock işlemine? Bu tür bir sistemde, diskin hızlı olması ve bellek miktarının yüksek olması tercih sebebidir. Şimdi, bu kullanıcının neden overclock işlemine giriştiğine bakalım. Mesela, bu arkadaş, 600 MHz'lik işlemcisini overclock ederek 800 MHz'de çalışıtırıyor.
Birincisi, bu adam 600 MHz'lik işlemciyi, 800 MHz'lik işlemciden 50$ ucuza almış olsun. İşlemcisini 800 MHz'e getirerek, 50$ ucuza 800 MHz'lik işlemci almış olmak istemesi. İkincisi ise, psikolojik bir şey. Arkadaşlarına, benim 600 MHz'lik işlemcim var yerine, 800 MHz'lik işlemcim var demek daha övünç verici bir şey olsa gerek? Daha yüksek hızlara ulaşmak isteği...

Şimdi, temas etmek istediğim konuya geçelim.

Zaten, işlemcinizi tam anlamıyla zorlayan birisi değilseniz, overclock işlemine hiç girişmeyin bile. Ama, sabah akşam oyun oynuyorum, animasyon ve resimlerle bol bol uğraşıyorum, DVD izliyorum, DivX gibi encoding işlemleri yaparak zaten bilgisayarın canını okuyan işlemler yapıyorum derseniz, overclock yapın. Overclock ile esas olan amaç nedir? Daha fazla performans artışı elde etmek. Eğer işlemcinizi sonuna kadar kullanmayan birisi değilseniz, overclock ile esas amaç olan performans artışını hissetmeyeceksiniz. Boşu boşuna riske gireceksiniz. Ama, bilgisayarı sabah akşam render işlemine bırakan birisiyseniz, render işleminin toplamda 10 dakika kısa sürmesi bile oldukça önemliyse, ki oldukça önemlidir, overclock olayına girişmeniz mantıklı.

Dolayısı ile, uzun lafın kısası, overclock işlemini, gerekiyorsa yapın. Burada bir önemli noktayı belirtmeden geçmeyelim. Performans artışı esas amaç ama %2-3'lük farkları hissetmek zor. Eğer overclock işlemi ile sonuçta elinize en az %5-10'luk performans artışı geçiyorsa, overclocking işlemi mantıklıdır.

Intel İşlemcilerde Overclock Olayı Tamam ama AMD İşlemcilerde Durum Ne Vaziyettedir?

Biliyorsunuz, geçtiğimiz günlerde yayınladığımız "AMD Duron ile Intel Celeron Karşı Karşıya" adlı yazımızda, AMD'nin performans bakımından oldukça önde olduğunu vurgulamıştık. Yazımızjn sonlarına doğru, AMD'nin Overclock potansiyelinde de, rakibi olan Intel'i geçtiğinden bahsetmiştik. Ama nasıl? Anlatalım.
Biliyorsunuz, işlemciler hızını belirlerken iki parametre vardır. Bunlar:
- Sistem veriyolu hızı (FSB)
- İşlemci çarpanı

Bu iki değer, işlemcinin hızını belirliyor. Bu iki değerin çarpımı, bizze işlemcinin hızını veriyor. Örneğin:
İşlemcinin sistem veriyolu hızı 100 MHz olsun. Çarpanı ise 8 olsun: 100x8= 800 MHz. Bu işlemcinin hızı. Olayı anladınız sanırım.

Günümüzdeki işlemcilerin hepsinin çarpanı kilitli olarak geliyor. Yani P-III 800'ün çarpanı 8 ve bunu kesinlikle değiştiremiyorsunuz. Örneğin, 100 MHz'lik P-III 800 işlemciyi overclock etmek istediğinizde, yapacağınız tek yol var: Çarpan nasıl olsa kilitli, işlemci hızını arttırmak için FSB hızıyla oynamak gerekiyor. Normalde, çarpanı arttırmak, overclocking işlemi açısından daha sağlıklı. FSB hızını arttırdığınızda, bellek hızı, AGP hızı gibi kavramların hızı da değiştiğinden pür dikkat etmek gerekiyor. Yani işten tam anlamayan bir kullanıcı, böyle bir olayın içine girse, kafası allak bullak olacak.
Güncel AMD işlemcilerinin de çarpanı kilitli olarak geliyor. Ama AMD, bize bu konuda açık bir nokta bırakmış. İşlemci çarpanını, bir kaç ufak müdahele ile kırabilmemiz mümkün. Böylece işlemci çarpanı serbest kalıyor ve işlemcinin *izin* verdiği maksimum hıza kadar çıkabilmemiz daha kolay oluyor. Örneğin, Duron 600 MHZ işlemcisinin değerleri 6x100 iken, 800 MHz'de (8x100) hiç sorun olmadan çalıştırabilmeniz mümkün. Bunun ayrıntısına gireceğiz birazdan, ben sadece örnek vermek istedim.

Peki ya çarpanı kırmazsak? AMD işlemcileri bildiğiniz gibi EV6 sistem yolu sistemiyle çalışıyor. Yani, normalde 100 MHz olan FSB hızı, AMD işlemcileri tarafından 200 MHz olarak kullanılıyor. Bu olay, DDR belleklerden alışık olduğumuz, bir saat darbesinin hem yükselen hem de alçan taraflarından veri okunabilmesiyle mümkün oluyor. Böylece, 100 MHz olan hız, efektif olarak 200 MHz olarak kullanılıyor. Şimdi vurgulamak istediğimiz noktaya gelelim. Piyasada, - Türkiye için - şu anda AMD işlemcileri kullanabileceğiz çok az sayıda KT133 çipsetli anakartlar var. KT133 çipsetli anakartlar ile, işemcinizi overclock etmek istediğinizde 110 MHz FSB'den sonra stabilite sorunları başlıyor. VIA, yeni çıkardığı KT133A çipseti ile 140 MHz'e kadar sorunsuz çıkabiliyorsunuz ama bu çipseti taşıyan boardların henüz Tükiyeye gelmediğini ve gelmesinin de uzun zaman aldığını düşünürseniz, AMD işlemciler ile kullanabileceğimiz anakartlar KT133 çipsetli olmak zorunda. Ve, - esas temas etmek istediğimiz nokta - AMD işlemciniz var ise ve gerçekten işlemcinizi overclock etmek istiyorsanız, işlemci çarpan kilidini kırmanız gerkiyor. Aksi takdirde, overclock işleminin çok zor olacağını belirtmek gerekiyor. Mesela, normal 6x100=600 MHz'de çalışan AMD Duron işlemcimizin çarpanını kırmazsak, KT133 çipsetli anakartta alabileceğimiz maksimum değer yaklaşık 110x6= 660 MHz olur, ki uğraşmaya değmez.

Önemli NOT: AMD işlemcilerin çarpanı normalde kilitli olarak geldiğinden, ilk başlarda AMD işlemcilerin çarpanını değiştirebilen anakartlar üretilmemişti. Fakat, daha sonralardan anakart üreticileri, AMD işlemcilerin çarpanını değiştirebilme yeteneği olan anakartlarını üretti. Bu sayede, eğer sahip olduğunuz Soket-A yapıdaki AMD işlemcinizin çarpanını kırdığınızda, anakart üzerinden bu çarpanı değiştirebiliyorsunuz. Bu özelliğie sahip olmayan anakartlarda ise, işlemcinin çarpanını kırsanız bile işlemci normal hızında çalışmaya devam ediyor.

AMD İşlemcilerde Çarpanı Kırma İşlemi

Birazcıkta teorik bilgi verirsek sanırım iyi olacak. AMD işlemcilerde, işlemcinin çarpanının belirlenebilmesi için, iki farklı sinyal kullanılıyor. Bunlardan birincisi, 4 bit'lik sinyal olan FID, çarpanı anakart çipsetine; bir diğer 4 bit'lik sinyal olan BP_FID ile de işlemci çerkirdeğine çarpan bilgisi gönderiliyor. Dolayısı ile, bilgisayar açıldıktan sonra olacak olayları az çok kestirmek mümkün. Bilgisayar açıldığı anda, BIOS'a çarpan bilgilerini "FID" verirken, işlemci çekirdeğine de BP_FID veriyor. Dolayısı ile, eğer farklı farklı değerler iletilirse, senkronizasyon sorunu olacağından işlemci çalışmayacaktır.

Bir diğer önemli nokta ise, bu sinyallerin işlemci üzerinde bulunan bir kaç köprü ile kontrol ediliyor olması. Bu köprülerden bizim için lazım olan L1 köprüsü. L1 köprüsündeki ayaklıkları birleştirerek, çarpanın kırılmasını ve çarpanın anakart tarafından ayarlanabilir duruma gelmesini sağlıyoruz. Çarpan ayarına imkan tanımayan anakartlarda ise, işlemci bilgileri işlemci çekirdeğinden okunmaya devam ediyor. Peki, bu sinyalleri kontrol eden köprüler neden işlemci içerisine değil de, işlemci dışına konuldu? AMD, bu konuda bir açıklama getiriyor ve eğer bu ayaklıkları işlemci çekirdeği içine alırsak, maliyet çok yükseliyor diyor. Ne kadar doğru bilemeyiz elbette.

Soket-A yapıdaki AMD işlemciler ilk çıktıklarında, çarpan kilitsiz olarak geliyordu. Çarpan kilitsiz olarak gelen Soket-A yapıdaki AMD işlemcimizin üzerindeki L1 köprüsüne bakalım:

Şimdi ise, çarpanı kilitli olarak gelen Soket-A yapıdaki AMD işlemcimize bakalım:

L1 köprüsündeki atkılar, sanırım bir laser ile bir birine temas ettirilmesi engellenmiş. Dolayısı ile, kilidi açmak için bu ayakları tekrar birleştirmek yeterli olacak. Ama nasıl?

L1 Ayaklarını Nasıl Birleştiririm?

Bu işin meraklısı, zaten bizden önce yabancı test sitelerine gidip bu konuyla ilgili yazıları okumuşlardır ve nelerin gerektiğini az çok biliyorlardır. Biz bu ayaklıkları birleştirme metodlarını tartışalım.

Ayaklıkları birleştirmek için, 2-3 metod bulunuyor. Bunlar:

- Lehimleme
- İletken Kalem ile birleştirme
- Kurşun Kalem ile birleştirme

Lehimleme metodunu hemen es geçiyorum. Çünkü uygulaması oldukça zor, tehlikeli ve işlemcinizi garanti dışı bırakan bir olay.

Geriye iki yöntem kalıyor. Elektronikçi arkadaşlar bilirler, bir PCB üzerinde iletken yollarda kopukluk olursa, Conductive Pen (Gümüş tabanlı İletken Kalem) ile bu kopuklukları düzeltebiliyorlardı. Her ne kadar telaffuz etmesi kolay olsa da, ülkemizde çok zor bulabileceğiniz aletlerden. Bir kaç arkadaş, bu kalemlerden gördüğünü söylemişti ama ben halen Türkiye'den gümüş tabanlı iletken yol yapıcı kalem alan birisini görmedim.

Bizim üzerinde duracağımız metod, "Kurşun Kalem" metodu. Bu metodun üzerinde durmamızın sebebi, gereken malzemenin bulunabilmesinin oldukça kolay olması, hata olsa bile düzeltilebilir olması.
Kurşun Kalem Metodu için Gerekli Malzemeler

- 0.5 mm HB uca sahip kalem
- Çok yumuşak silgi (Dağılabilen dilgilerden olması lazım) (Hata olursa)
- Selebant

Kalem ile çizme işine başlamadan önce dikkat etmeniz gereken bir kaç şey var. Kurşun Kalem ile L1 ayaklarını çizerken, ayakların birbirine temas etmemesi gerekiyor:

Olması gereken bu.
 
Yukarıda, L1 köprülerini doğru şekilde nasıl birleştirilmesi gerektiğini, kendi çizdiğim resim ile gösterdim.
Aşağıda ise, yapılacak muhtemel bir hatanın resmini gösteriyorum:


Olmadı!
Evet, olmadı. Silgi, burada işimize yarıyor. Hata yapmam demeyin. Çünkü bu ayaklılar, görüldüğünden çok daha ufak. Kurşun kalem ile "karalama" işlemini yaparken pür dikkat etmek lazım. Aşağıda, "Kurşun Kalem Metoduyla" başarıyla karalanmış L1 köprüsünü görüyorsunuz.

Kurşun kalem nasıl oluyorda iletken oluyor derseniz, içinde grafit olduğunu söylersek sanırım itirazınız kalmaz.
Bu metodun en kötü tarafı, uzun ömürlü olmayışı. Çünkü,bildiğiniz gibi kurşun kalem ile karaladınız yerler kolayca silinebilir. Yaptığımız işlemin uzun ömürlü olması için, ufak ve ince bir selebant parçasını, L1 köprüsünü üzerine yapıştırın. İşlem bitmiştir.

Olay bu kadar. Eliniz kurşun kalem tutmayı biliyorsa, kilidi kırabilirsiniz demektir. Ama biraz dikkatli olmak lazım.

Overclocking Analizleri

Tabii, çarpan kırmayı anlatarak sizleri yarı yolda bırakmak olmaz. Kendi kullandığım Duron 600 ile yaşadığım overclock deneyimlerini, çıktığım maksimum stabil hızları, overclock ile elde ettiğim performans kazancını ve dikkat edilmesi gerek hususları size aktarmaya çalışayım.
Test Sistemi

- Abit KT7A-RAID (BIOS Ver.: WW)
- Duron 600 (AKBA0032XPBW)
- 128 MB Kingston PC133 SDRAM
- Quantum FireBall AS - 20 GB, 7200 rpm
- Leadtek Geforce2MX
- Samsung 8X DVD (SD-608)
- Elan Vital Bakır Alaşımlı Fan


- Windows2000 SP1
- DirectX 8.0
- Detonator 6.18
- VIA AGP 4.04 AGP Sürücüsü
- Quake 3 Arena
- Winbench 99 Ver. 1.0
- Winstone 99 Ver. 1.3

Kendime Duron 600 işlemci aldıktan sonra, bir arkadaşa da Duron 600 işlemci aldık. Benim işlemci biraz voltaj iteklemesi ile 1 GHz'de sorunsuz çalışırken, arkadaşa aldığımız işlemci ile şu anda 850 MHz'in (8.5x100) üzerine çıkamıyoruz. Fakat ben bu hıza, işlemciyi ilk aldığım gün çıkmadım.

İşlemciyi ilk aldığımda, 900 MHz'de bile stabilite sorunları oluyordu. Ben de bu işlemciyi yaklaşık 1 ay boyunca normal kendi hızında çalıştırdım. Daha sonraki denemelerimde, artık 950 MHz'de bile boot etmeyen işlemci, 1 GHz'de sorunsuz çalışıyordu. İşlemciyi kullandıkça açtık mı ne?
Bu konuda başka bir örnek vereyim. Yine bir arkadaşta, Celeron 500 + Asus P3V4X'den oluşan bir sistem var. Sistemi arkadaşa ilk aldığımız ay, FSB hızını 75 MHz'e bile çıkartamıyoruduk. BIOS ekranında kilitleniyordu sistem. Sistemde hiç bir parça değişikliği yapmadan, bu sistem 1 ay süreyle normal hızına kullanıldı. Sonra bir kaç deneme yapalım dediğimizde, işlemci artık 83 MHz'de çok stabil çalışmaya başladı.

Demek istediğim, biraz saçma gelebilir ama, aldığınız işlemci hemen ilk başta tam potansiyeliyle overclock olmayabilir. 1-2 hafta işlemciyi biraz kullandıktan sonra tekrar deneme yapmakta fayda var diye düşünüyorum.

Her neyse, esas konumuza geçelim: Duron ile Overclock işlemleri. Şunu belirtmeliyim ki, alacağınız Duron 600 işlemci ( eğer bulabilirseniz ), 850 MHz'e kadar sorunsuz. Ondan sonrası, işlemcinin overclock potansiyeline bağlı. Unutmayın, her işlemcinin overclock potansiyeli aynı değil. Yani, ben 32. hafta üretimi olan Duron 600 işlemciyi 1 GHz'de sorunsuz çalıştırabiliyorum ama, her 32. hafta üretimi olan Duron 600 işlemciler veya her Duron 600 işlemci, 1 GHz'de çalışacak diye bir kaide yok. Şans, şans, şans.. Tabii ben konuda biraz şanslıyım. İlk başta, sahip olduğum Celeron 300A işlemcim, 512 MHz 'de (112x4.5); Celeron 366 işlemcim 550 MHz'de (100x5.5) çok uzun süreler sorunsuz çalışmıştı. Daha sonra AMD'ye geçtim işte.

Peki, bu saatten sonra Duron 600 işlemci bulabilecek miyiz? Hayır. Çok zor. Biliyorsunuz, sizlere daha önce AMD'nin Türkiyede ki durumundan bahsettim. Duron 700, Duron 750, Duron 800 işlemcilerini ise bulmanız mümkün. Bu işlemcileri nereden alacağınızı bilmiyorsanız, bana mail atın. Size yardımcı olmaya çalışırım. Peki, bu alacağımız 700 - 750 - 800 MHz hızındaki Duron işlemciler tahmini overclock potansiyelleri ne olur? Bir tablo ile bunu gösterelim:
 
Sorunsuz olarak çıkabileceğiniz tahmini MHz aralığı
Duron 600
800-1000 MHz
Duron 700
850-1000 MHz
Duron 750
850-1000 MHz
Duron 800
950-1100 MHz
Unutmayın, bunlar tahmini değerler. Yukarıda belirttiğimiz en düşük değerlere zaten çıkarsınız, o sorun olmayacaktır. Fakat belirttiğimiz aralıklarda çalışma şansı, işlemcinin hangi haftada üretildiğine, çıktığı fabrikaya bağlı olarak değişiklik gösteriyor.

Overclock Yaparken Dikkat Edilmesi Gerek Noktalar

Overclock olayına biraz yatkın olanlar, overclock işleminin adım adım yapılması gerektiğini bilir. Overclock işleminde, sadece hızı arttırmak yeterli değil. Hız arttıkça, işlemci daha fazla gerilime ihtiyaç duyacağında, işlemci voltajını arttırmak gerekiyor. Aynı şekilde, anakartın giriş/çıkış voltajını da buna bağlı olarak arttırmak gerekiyor. Mesela, Duron 600 işlemcimi, 750 MHz'e kadar voltaj arttırımı gerektirmeden çıkartabiliyorum. 850 MHz'de ise, normalde 1,6V olan işlemci voltajını, 1,75V'a çekerek stabiliteyi sağlıyorum. Aksi takdirde kilitlenmeler, stabilite bozuklukları baş gösteriyor. Ve yine örnek verecek olursam, Duron 600 işlemcimi, 1 GHz'e yükselttiğimde, stabiliteyi sağlamak için işlemci voltajını 1,85V, I/O Voltaj'ını da 3,4'dan 3,6V'a çıkarmam gerekti.

Overclock yapmadan önce belirlemeniz gereken şeyler şunlar:

- Çarpanını kırdığım işlemcinin çarpanını BIOs'dan mı yoksa anakart üzerinde ki Dip_Switchiler mi ayarlanıyor?
- İşlemci voltajı nereden ayarlanıyor?

Bunları belirledikten sonra işimize koyulabiliriz. Ben de Soket-A yapıda iki tane anakart bulunuyor: FIC AZ11E ve Abit KT7A-RAID.
Her iki anakartta, işlemcinin çarpanını kırdığınız takdirde, işlemci çarpanını ve voltaını değiştirmenize olanak tanıyor. FIC AZ11E, bu işlemleri anakart üzerinde bulunan Dip_Switch'ler ile bu işi yaparken, Abit KT7A-RAID ile bu işlemlerin hepsini BIOS'dan yapıyoruz.
Evet, herşey step-by-step. Mesela, Dip_Switch'ler ile yapacaksak, elimize anakart kitapçığını alarak, voltaja hiç elleşmeden, çarpanı değiştiriyorsunuz. Hemen en yüksek değerlere çıkmayın. İşlemcinin sahip olduğu overclock potansiyelini bilmiyoruz çünkü.

Mesela, Duron 600 'ün normalde 6 olan çarpanını ilk olarak 7.5'e getirerek deneme yapın. Dediğim gibi, ilk başta voltaja elleşmeyin. Baktınız sistem 1-2 saat yoğun kullanımdan sonra stabil, bir üst seviyeye geçin. Çarpanı bu sefer 8x yapın. Baktınız sistem voltaj arttırmasız yine oldukça stabil, bir üst seviyeye geçiyoruz. 8.5X çarpanına geçtik. Sistem açıldı. Windows'a girdi. Fakat, oyunlarda kilitlenme oldu. Bu, biraz voltaj iteklemesinin gerektiğinin göstergesi.
Voltaj iteklemesi gerektiği takdirde, işlemci voltajını hemen en üst seviyeye çıkartmayın. Bunu da adım adım yapacaksınız. Dedik ya, 850 MHz'de voltaj iteklemesine ihtiyacınız oldu, normalde 1.6V olan voltajı 1.7V'a çıkarın. Baktınız sistem stabil oldu, bu seviyede kalsın. Ama yine sorun varsa, bu sefer 1.75V yapın. Stabil olduysa, okeydir.
Sanırım mantaliteyi anladınız. Adım adım yapılmalı herşey. Bu sayede çıkabileceğiniz maksimum hızı en sağlıklı bir şekilde tespit edebilmek mümkün.

İşin En Önemli Kısmı: İşlemci Soğutması

Olayın en can alıcı noktasına geldik. Sadece overclock yapıyoruz diye, iyi bir soğutma edinmemiz gerekmiyor. AMD işlemciler, sahip oldukları transistor sayısından dolayı, rakibi olan Intel işlemcilerden çok daha fazla ısınıyorlar. Örneğin, Duron 600 işlemcisinin ısınma oranı, Intel P-III 733 ile aynı seviyede.

Overclock edenlere bir sonraki paragrafta sesleneceğiz ama şimdi efendi kullanıcılara biraz nasihat verelim. AMD tabanlı bir sistem alacaksanız eğer, kesinlikle işlemci soğutucusuna fazladan 10-15$ vermek gerekiyor. Piyasada bulunan 2-3$'lık fanlar ile AMD işlemcileri soğutmanın mümkün OLMADIĞINI bilmelisiniz.

Overclock yapacak arkadaşlara gelelim. Yukarıda söylediklerimizi sizler için de geçerli. Overclock sever arkadaşların, AMD işlemcileri için seçmesi gereken fanlarda dikkat etmesi gereken nokta, o fan'ın yapıldığı iletken maddenin cinsi ve fanın dönüş hızı. Her maddenin ısı emme miktarı aynı değildir. Piyasada bulabileceğiniz bir çok fan Aliminyum alaşımlı. Fakat, AMD için önerilen fanlar bakır alaşımlı olmalı. Bu şekilde, işlemci çekirdeğindeki ısı tam anlamıyla emilebilecek ve sıcaklık tam anlamıyla absorbe edilebilecektir.

Ülkemizde bakır alaşımlı fan olarak, Çizgi Elektronik'in getirdiği Elan Vital fanlar bulunmakta. Bunun haricinde ülkemizde, AMD işlemciler için önerilen fanların azlığını bir yana bırakırsak, Cooler Master'ın AMD Duron-ThunderBird fanları dikkat çekici. CoolerMAster'ın Türkiyede bulabileceğiniz 6H51 modeli, oldukça etkili bir fan. Tavsiye edebilirim. Ama Elan Vital fan'lar, Bakır alaşımlı olmasının verdiği avantaj ile, daha etkili bir soğutma sağlıyor. Bu saydığım fan modellerinin üzerinde yaklaşık 5000-5500 devir dönen fanlar bulunuyor. Bu da önemli.
 

Elan Vital Bakır Alaşımlı Fan'ın üstten görünüşü
 

Elan Vital Bakır Alaşımlı Fan'ın yandan görünüşü
AMD işlemcileriniz için güzel fanları, http://www.mavibilgisayar.com/ adresinden bulabilirsiniz. MaviBilgisayar'dan, son zamanlarda oldukça ünlü olan ORB türü fanlardan da bulabilmeniz mümkün. Bu fanın incelemesini yakında siteye koymayı düşünüyoruz.

Chrome ORB
Demek istediğim, overclock işine girişmeden önce, mantıklı bir soğutucu almanız gerekiyor. Ben kendi sistemimde, Çizgi Elektronik tarafından sağlanan Elan Vital Bakır Alaşımlı fan'ıkullanıyorum ve size şiddetle tavsiye ederim.
Olay, iyi bir soğutucu edinmekle de bitmiyor. Aldığımız ısı emici+ fan ikilisinin iyi bir soğutma sağlayabilmesi için, çekirdek üzerindeki ısı tam oalrak emilmeli. Fakat, ısı emicilerin alt yüzeyi, çekirdek üzerine tam temas ediyor gibi gözüksede, arada kala boşluklar sayesinde etkin bir soğutma sağlanmıyor. "Isı İletici pasta", "Thermal Gres" diye ifade ettiğimiz bazı katısıvı kıvamındaki pastalar, ısnın tam emilmesinden yardımcı oluyor. Elektronikçilerde bu dediğim maddeyi bulmanız zor olmaz. Ama bu maddenin hangi maddeden yapıldığı önemli. Bizim işimize yarayan iki madde bulunuyor. Silikon ve Gümüş. Gümüş daha iyi iletkendir. Silikon tabanlı olursa da olur.

Isı iletici Pastayı, işlemci çekirdeği boyutunda ve
ince bir tabaka halinde sürmek gerekir.
Soğutma sorununu da hallettik. Şimdi sıra testlerde!

Performans Sonuçları

AMD Duron 600 MHz işlemcimizi, ilk başta normal hızında test ettik. Daha sonra işlemcimizi 800, 850, 900, 950, 980, 1000 MHz gibi değişik hızlara overclock ederek, darklı test programları ile performanslarını ölçtük.

Sizlere daha önce, KT133 çipsetli anakartlar ile çıkılabilecek maksimum stabil FSB hızının 110 MHz olduğundan bahsetmiştim. Benim elimde, KT133 çipsetini geliştirilmiş versiyonu olan KT133A çipsetli anakart olduğu için, FSB hızını 140 MHz'e kadar sorunsuz arttırabildim. Gerekli yorumları zaten performans sonuçlarının arasında yaptığımdan, bu bölümü uzatmak gereksiz.

Winbench99 benchmark programı içinde entegre olarak gelen bir modül olan CPU Mark testi ile, tam sayı performansı ile veri transfer hızını ölçüyor. Bu test, işlemci FSB hızına genelde daha çok bağlı olduğu için, 7,5x133 çarpanları ile çalışan 1 GHz'lik işlemcimizin CPU Mark 99 puanı, 10x100 çarpanı ile çalışan 1 GHz'lik işlemcimizden daha fazla.

Bu testimiz ile, işlemcilerin matematiksel hesaplamalarının performanslarını ölçüyoruz. FSB hızı önemli değil gördüğünüz üzere. Önemli olan işlemcinin kaç MHz'de çalışıyor olması.

Şimdi ise gerçek hayatta nasıl bir performans artışı elde ettiğimize bakalım:
Business Winstone 99 ile, işlemcilerimizi overclock ettiğimizde, günlük hayatta kullandığımız yazılımlar ile performansı ölçüyor. İşlemcini kaç MHz'de çalıştığının yanı sıra FSB hızı, belleklerin çalışma hızı performansa etki eden önemli faktörlerden. Zaten bu da açık olarak gözüküyor.
Şimdi ise oyun performansımıza bakıyoruz. Quake3 Arena ile yaptığımız testleri 640x480x16 çözünürlükte yaptık. Bu şekilde ekran kartının performansta bir darboğaz yaratmasını engelleyerek, işlemcilerin tam performanslarını ortaya koymasını sağladık.

Bellek performansı yani dolaylı yoldan FSB hızı, performansı etkileyen en önemli faktörler. Örneğin, 133 MHz (266 MHz DDR) FSB ile çalışan Duron 800 MHz işlemcimiz, 100 MHz FSB ile çalışan Duron 950 işlemcimizin performansına yakın bir performans suunuyor. Fakat, şu anda Türkiyede sadece KT133 çipsetli anakart bulabileceğimizden, bizim denediğimiz 110 MHz FSB yüksek hızlardaki denemelere pek kulak asmayın.

Performans Artış Oranları
Evet, işlemcimizi 1 GHz'e kadar çıkartabildik. Ama elde ettiğimiz performas artışı ne düzeyde oldu? Şimdi bu oranlara bir bakalım.
 
CPU Mark 99
FPU Mark
Winstone 99
Q3 Arena
Duron 600 --> 800 (100x8)
%27
%33
%9
%12
Duron 600 --> 800 (133x6)
%32
%33
%11
%21
Duron 600 --> 850 (100x8,5)
%34
%41
%9
%13
Duron 600 --> 900 (100x9)
%34
%50
%11
%18
Duron 600 --> 950 (100x9,5)
%45
%58
%14
%23
Duron 600 --> 980 (140x7)
%56
%63
%20
%34
Duron 600 --> 1000 (133x7,5)
%55
%66
%18
%28
Duron 600 --> 1000 (100x10)
%49
%66
%16
%24
Yukarıdaki tabloda, performans artış oranlarını görüyorsunuz. Performans olarak baktığımızda, 980 MHz (140x7) seçeneğinin en mantıklı olduğunu anlamak zor değil. Fakat, her bellek 140 MHz FSB hızını kaldırmaz ve KT133 çipsetli anakartlar ile 140 MHz'e çıkmaz hayal ürünü olacağından, bu seçeneği çoğu kullancı es geçebilir. Ama KT133A çipsetli anakart bulurum derseniz, ayrı mesele.

Son Söz

Farkındayım, oldukça uzun bir yazı oldu. Fakat, bu konu hakkkında Türkçe birkaynak olmadığından böyle bir işe soyunmak gerekiyordu.

Hemen hemen her yazının sonunda söylüyorum. Bu yazı aslında çok daha önceleri hazırlanabilirdi. Fakat, bizim sevgili distributorlerin zamanında ürün göndermemesi; daha doğrusu ürün inceleme için ürün göndermekten çekinmeleri, bizleri zora sokuyor ve sizlere bir şey sunamıyoruz. Her neyse, belki zamanı geldiğinde sizlere artık bu konulardan dolayı şikayette bulunmayız. Ama, bu zamanın gelmesine inanın daha çok var.

AMD Duron ve ThunderBird işlemcileri ile Overclock konusu en çok merak edilen konular arasındaydı. Duron, ucuz fiyatı ve mükemmel performansıyla, AMD işlemci alacakların gönlünü çeldi. Duron işlemcisinin overclock işlemine, abisi olan ThunderBird'den daha yatkın olması, bizi böyle bir yazının hazırlığına itti ve sonuçta Duron 600 ile yaşadığımız Overclock deneyimlerini sizlere anlatan bir yazı hazırladık
CD-ROM ve CD-Writer’ın görevini açıklama
Küme komut işleme: grafik kartının aynı anda bir komut yerine daha fazla komut göndermesini sağlar.   
 
FAT32
Hard diskin Çalışma PrensipleriIDE  SCSI ¨      FAT  FAT16
 
 
 
Bugün 20 ziyaretçi (42 klik) kişi burdaydı!
codeHTML

POQbum.com
POQbum.com





Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol